YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Automated Detection of Multiple Pavement Defects

    Source: Journal of Computing in Civil Engineering:;2017:;Volume ( 031 ):;issue: 002
    Author:
    Stefania C. Radopoulou
    ,
    Ioannis Brilakis
    DOI: 10.1061/(ASCE)CP.1943-5487.0000623
    Publisher: American Society of Civil Engineers
    Abstract: Knowing the pavement condition is essential for efficiently deciding on maintenance programs. Current practice is predominantly manual with only 0.4% of inspections happening automatically. All methods in the literature aiming at automating condition assessment focus on two defects at most, or are too expensive for practical application. In this paper, the authors propose a low-cost method that automatically detects pavement defects simultaneously using parking camera video data. The types of defects addressed in this paper are two types of cracks (longitudinal and transverse), patches, and potholes. The method uses the semantic texton forests (STFs) algorithm as a supervised classifier on a calibrated region of interest (myROI), which is the area of the video frame depicting only the usable part of the pavement lane. It is validated using data collected from the local streets of Cambridge, U.K. Based on the results of multiple experiments, the overall accuracy of the method is above 82%, with a precision of more than 91% for longitudinal cracks, more than 81% for transverse cracks, more than 88% for patches, and more than 76% for potholes. The duration for training and classifying spans from 25 to 150 min, depending on the number of video frames used for each experiment. The contribution of this paper is dual: (1) an automated method for detecting several pavement defects at the same time, and (2) a method for calculating the region of interest within a video frame considering pavement manual guidelines.
    • Download: (1.024Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Automated Detection of Multiple Pavement Defects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245532
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorStefania C. Radopoulou
    contributor authorIoannis Brilakis
    date accessioned2017-12-30T13:05:46Z
    date available2017-12-30T13:05:46Z
    date issued2017
    identifier other%28ASCE%29CP.1943-5487.0000623.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245532
    description abstractKnowing the pavement condition is essential for efficiently deciding on maintenance programs. Current practice is predominantly manual with only 0.4% of inspections happening automatically. All methods in the literature aiming at automating condition assessment focus on two defects at most, or are too expensive for practical application. In this paper, the authors propose a low-cost method that automatically detects pavement defects simultaneously using parking camera video data. The types of defects addressed in this paper are two types of cracks (longitudinal and transverse), patches, and potholes. The method uses the semantic texton forests (STFs) algorithm as a supervised classifier on a calibrated region of interest (myROI), which is the area of the video frame depicting only the usable part of the pavement lane. It is validated using data collected from the local streets of Cambridge, U.K. Based on the results of multiple experiments, the overall accuracy of the method is above 82%, with a precision of more than 91% for longitudinal cracks, more than 81% for transverse cracks, more than 88% for patches, and more than 76% for potholes. The duration for training and classifying spans from 25 to 150 min, depending on the number of video frames used for each experiment. The contribution of this paper is dual: (1) an automated method for detecting several pavement defects at the same time, and (2) a method for calculating the region of interest within a video frame considering pavement manual guidelines.
    publisherAmerican Society of Civil Engineers
    titleAutomated Detection of Multiple Pavement Defects
    typeJournal Paper
    journal volume31
    journal issue2
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000623
    page04016057
    treeJournal of Computing in Civil Engineering:;2017:;Volume ( 031 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian