YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Observations on the Application of LS-SVM in Slope System Reliability Analysis

    Source: Journal of Computing in Civil Engineering:;2017:;Volume ( 031 ):;issue: 002
    Author:
    Jian Ji
    ,
    Chunshun Zhang
    ,
    Yilin Gui
    ,
    Qing Lü
    ,
    Jayantha Kodikara
    DOI: 10.1061/(ASCE)CP.1943-5487.0000620
    Publisher: American Society of Civil Engineers
    Abstract: The stability evaluation of earth slopes is a common practice in geotechnical designs. To account for uncertain characteristics of soil properties, probabilistic evaluation that requires repeated calculations of factor of safety (FoS) is inevitably encountered. Because FoS for most slopes in practice is computed numerically due to the lack of analytical solutions, various surrogate models are usually developed to ease the probabilistic evaluation. This paper investigates the probability of slope system failure with surrogate models based on the least-squares support vector machine (LS-SVM) regression. First, some limitations in the current application of LS-SVM to complex slopes with multiple failure modes are pointed out. In the context of Monte Carlo simulations (MCS) for probabilistic slope stability evaluation, the authors first discuss the importance of space filling of training data to the success of the LS-SVM and then propose an efficient routine for generating the training data by which the global prediction of FoS is reasonably guaranteed. The application of the LS-SVM is illustrated through two well-documented slope examples. Comparative studies are conducted to identify the effect of training data size and hyperparameters on the model performance. It is observed from this study that the LS-SVM model can reasonably capture the global characteristics of complex slopes only when all the relevant soil layers are treated probabilistically; otherwise, some local inconsistency could be encountered. Focusing on the probability of failure prediction defined by different FoS thresholds, it is shown that the LS-SVM is robust and a promising method for the evaluation of complex slopes.
    • Download: (682.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Observations on the Application of LS-SVM in Slope System Reliability Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245531
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorJian Ji
    contributor authorChunshun Zhang
    contributor authorYilin Gui
    contributor authorQing Lü
    contributor authorJayantha Kodikara
    date accessioned2017-12-30T13:05:46Z
    date available2017-12-30T13:05:46Z
    date issued2017
    identifier other%28ASCE%29CP.1943-5487.0000620.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245531
    description abstractThe stability evaluation of earth slopes is a common practice in geotechnical designs. To account for uncertain characteristics of soil properties, probabilistic evaluation that requires repeated calculations of factor of safety (FoS) is inevitably encountered. Because FoS for most slopes in practice is computed numerically due to the lack of analytical solutions, various surrogate models are usually developed to ease the probabilistic evaluation. This paper investigates the probability of slope system failure with surrogate models based on the least-squares support vector machine (LS-SVM) regression. First, some limitations in the current application of LS-SVM to complex slopes with multiple failure modes are pointed out. In the context of Monte Carlo simulations (MCS) for probabilistic slope stability evaluation, the authors first discuss the importance of space filling of training data to the success of the LS-SVM and then propose an efficient routine for generating the training data by which the global prediction of FoS is reasonably guaranteed. The application of the LS-SVM is illustrated through two well-documented slope examples. Comparative studies are conducted to identify the effect of training data size and hyperparameters on the model performance. It is observed from this study that the LS-SVM model can reasonably capture the global characteristics of complex slopes only when all the relevant soil layers are treated probabilistically; otherwise, some local inconsistency could be encountered. Focusing on the probability of failure prediction defined by different FoS thresholds, it is shown that the LS-SVM is robust and a promising method for the evaluation of complex slopes.
    publisherAmerican Society of Civil Engineers
    titleNew Observations on the Application of LS-SVM in Slope System Reliability Analysis
    typeJournal Paper
    journal volume31
    journal issue2
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000620
    page06016002
    treeJournal of Computing in Civil Engineering:;2017:;Volume ( 031 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian