YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhanced Crack Segmentation Algorithm Using 3D Pavement Data

    Source: Journal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 003
    Author:
    Chenglong Jiang
    ,
    Yichang James Tsai
    DOI: 10.1061/(ASCE)CP.1943-5487.0000526
    Publisher: American Society of Civil Engineers
    Abstract: Automatic pavement crack segmentation has gained attention among researchers and transportation agencies over the past two decades. However, most existing algorithms using two-dimensional (2D) pavement intensity images cannot provide a satisfactory performance. With the advent of sensing technology, three-dimensional (3D) line laser pavement imaging systems have become available. The objective of this paper is to propose an enhanced dynamic optimization algorithm employing the advantages of 3D pavement data to improve crack segmentation. The proposed algorithm consists of three major stages. First, a two-step Gaussian filter is applied to remove outliers from the collected laser data and rectify the profile in order to reduce the influence of cross-slope and ruts on crack segmentation. Then, a rough crack segmentation stage is conducted to adaptively identify the crack regions of interest. Finally, a bounding box and major orientation for each valid crack region of interest will provide searching space and direction for the precise crack segmentation using the dynamic optimization algorithm. Experimental tests were conducted using actual pavement data collected near Savannah, Georgia. The four most common types of pavement cracking (longitudinal, transverse, block, and alligator cracking), as well as distress-free pavements, are tested, and the performance between original dynamic optimization algorithm and the proposed algorithm is compared. Experimental results show that the proposed algorithm take only about 1/4 of the average computation time of the original algorithm. Also, the accuracy of crack segmentation has been improved since the proposed algorithm removes the unnecessary false positives and handles cracks in multiple directions better. Finally, conclusions are drawn, and recommendations for future research are discussed.
    • Download: (4.293Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhanced Crack Segmentation Algorithm Using 3D Pavement Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245486
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorChenglong Jiang
    contributor authorYichang James Tsai
    date accessioned2017-12-30T13:05:16Z
    date available2017-12-30T13:05:16Z
    date issued2016
    identifier other%28ASCE%29CP.1943-5487.0000526.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245486
    description abstractAutomatic pavement crack segmentation has gained attention among researchers and transportation agencies over the past two decades. However, most existing algorithms using two-dimensional (2D) pavement intensity images cannot provide a satisfactory performance. With the advent of sensing technology, three-dimensional (3D) line laser pavement imaging systems have become available. The objective of this paper is to propose an enhanced dynamic optimization algorithm employing the advantages of 3D pavement data to improve crack segmentation. The proposed algorithm consists of three major stages. First, a two-step Gaussian filter is applied to remove outliers from the collected laser data and rectify the profile in order to reduce the influence of cross-slope and ruts on crack segmentation. Then, a rough crack segmentation stage is conducted to adaptively identify the crack regions of interest. Finally, a bounding box and major orientation for each valid crack region of interest will provide searching space and direction for the precise crack segmentation using the dynamic optimization algorithm. Experimental tests were conducted using actual pavement data collected near Savannah, Georgia. The four most common types of pavement cracking (longitudinal, transverse, block, and alligator cracking), as well as distress-free pavements, are tested, and the performance between original dynamic optimization algorithm and the proposed algorithm is compared. Experimental results show that the proposed algorithm take only about 1/4 of the average computation time of the original algorithm. Also, the accuracy of crack segmentation has been improved since the proposed algorithm removes the unnecessary false positives and handles cracks in multiple directions better. Finally, conclusions are drawn, and recommendations for future research are discussed.
    publisherAmerican Society of Civil Engineers
    titleEnhanced Crack Segmentation Algorithm Using 3D Pavement Data
    typeJournal Paper
    journal volume30
    journal issue3
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000526
    page04015050
    treeJournal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian