YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bond Behavior of FRP–Concrete in Presence of Intermediate Crack Debonding Failure

    Source: Journal of Composites for Construction:;2017:;Volume ( 021 ):;issue: 005
    Author:
    Tayyebeh Mohammadi
    ,
    Baolin Wan
    ,
    Kent A. Harries
    ,
    Michael E. Sweriduk
    DOI: 10.1061/(ASCE)CC.1943-5614.0000797
    Publisher: American Society of Civil Engineers
    Abstract: An experimental and numerical program to investigate the behavior of intermediate crack (IC) debonding failure and the bond-slip relationship between the fiber-reinforced polymer (FRP) plates and concrete in FRP-strengthened concrete beams is presented. Simple notched-beam specimens were used to represent an existing flexural-shear crack that triggers IC debonding. In all experimental cases, it was observed that the IC debonding initiated at the tip of a diagonal crack close to the notch or a flexural crack at the beam midspan. To study the sensitivity of the debonding behavior to the location of the cracks along the beam span, the notch position was placed at different locations along the shear span. The combination of the concrete damaged plasticity model and the extended finite-element method (XFEM) based cohesive method is proposed in this paper to model the complete concrete response, and to examine the stress state of the FRP–concrete interface in the presence of IC debonding failure. The numerical results show that the diagonal crack close to the notch results from a mixed-mode stress state prior to FRP debonding. Once the diagonal crack is initiated close to the flexure-shear crack, IC debonding propagates in pure shear stress condition at the FRP–concrete interface regardless of the moment shear ratio at the location of the flexure-shear crack.
    • Download: (2.020Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bond Behavior of FRP–Concrete in Presence of Intermediate Crack Debonding Failure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245413
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorTayyebeh Mohammadi
    contributor authorBaolin Wan
    contributor authorKent A. Harries
    contributor authorMichael E. Sweriduk
    date accessioned2017-12-30T13:04:53Z
    date available2017-12-30T13:04:53Z
    date issued2017
    identifier other%28ASCE%29CC.1943-5614.0000797.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245413
    description abstractAn experimental and numerical program to investigate the behavior of intermediate crack (IC) debonding failure and the bond-slip relationship between the fiber-reinforced polymer (FRP) plates and concrete in FRP-strengthened concrete beams is presented. Simple notched-beam specimens were used to represent an existing flexural-shear crack that triggers IC debonding. In all experimental cases, it was observed that the IC debonding initiated at the tip of a diagonal crack close to the notch or a flexural crack at the beam midspan. To study the sensitivity of the debonding behavior to the location of the cracks along the beam span, the notch position was placed at different locations along the shear span. The combination of the concrete damaged plasticity model and the extended finite-element method (XFEM) based cohesive method is proposed in this paper to model the complete concrete response, and to examine the stress state of the FRP–concrete interface in the presence of IC debonding failure. The numerical results show that the diagonal crack close to the notch results from a mixed-mode stress state prior to FRP debonding. Once the diagonal crack is initiated close to the flexure-shear crack, IC debonding propagates in pure shear stress condition at the FRP–concrete interface regardless of the moment shear ratio at the location of the flexure-shear crack.
    publisherAmerican Society of Civil Engineers
    titleBond Behavior of FRP–Concrete in Presence of Intermediate Crack Debonding Failure
    typeJournal Paper
    journal volume21
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000797
    page04017018
    treeJournal of Composites for Construction:;2017:;Volume ( 021 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian