YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two-Parameter Kinematic Approach for Shear Strength of Deep Concrete Beams with Internal FRP Reinforcement

    Source: Journal of Composites for Construction:;2017:;Volume ( 021 ):;issue: 002
    Author:
    Boyan I. Mihaylov
    DOI: 10.1061/(ASCE)CC.1943-5614.0000747
    Publisher: American Society of Civil Engineers
    Abstract: Tests of deep concrete beams with internal fiber-reinforced polymer (FRP) reinforcement have shown that such members can exhibit lower shear strength than members with conventional steel reinforcement. To model this effect, the current paper proposes an approach based on a two-parameter kinematic theory (2PKT) for conventional deep beams. The 2PKT is built on a kinematic model with two degrees of freedom that describes the deformation patterns of cracked beams. Using this theory shows that large strains in FRP longitudinal reinforcement result in reduced shear resistance of the critical loading zones (CLZ) of deep beams. The original 2PKT is therefore modified by introducing a reduction factor for the shear carried by the CLZ. The extended 2PKT approach is then applied to a database of 39 tests of FRP-reinforced deep beams from the literature, resulting in an average shear strength experimental-to-predicted ratio of 1.06 and a coefficient of variation of 18.3%. The results show that the 2PKT adequately captures the effects of the stiffness of the reinforcement, section depth, concrete strength, and shear-span-to-depth ratio on the shear strength of FRP-reinforced deep beams.
    • Download: (775.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two-Parameter Kinematic Approach for Shear Strength of Deep Concrete Beams with Internal FRP Reinforcement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245395
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorBoyan I. Mihaylov
    date accessioned2017-12-30T13:04:49Z
    date available2017-12-30T13:04:49Z
    date issued2017
    identifier other%28ASCE%29CC.1943-5614.0000747.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245395
    description abstractTests of deep concrete beams with internal fiber-reinforced polymer (FRP) reinforcement have shown that such members can exhibit lower shear strength than members with conventional steel reinforcement. To model this effect, the current paper proposes an approach based on a two-parameter kinematic theory (2PKT) for conventional deep beams. The 2PKT is built on a kinematic model with two degrees of freedom that describes the deformation patterns of cracked beams. Using this theory shows that large strains in FRP longitudinal reinforcement result in reduced shear resistance of the critical loading zones (CLZ) of deep beams. The original 2PKT is therefore modified by introducing a reduction factor for the shear carried by the CLZ. The extended 2PKT approach is then applied to a database of 39 tests of FRP-reinforced deep beams from the literature, resulting in an average shear strength experimental-to-predicted ratio of 1.06 and a coefficient of variation of 18.3%. The results show that the 2PKT adequately captures the effects of the stiffness of the reinforcement, section depth, concrete strength, and shear-span-to-depth ratio on the shear strength of FRP-reinforced deep beams.
    publisherAmerican Society of Civil Engineers
    titleTwo-Parameter Kinematic Approach for Shear Strength of Deep Concrete Beams with Internal FRP Reinforcement
    typeJournal Paper
    journal volume21
    journal issue2
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000747
    page04016094
    treeJournal of Composites for Construction:;2017:;Volume ( 021 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian