YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Durability of Hybrid Composite Beam Bridges Subjected to Various Environmental Conditioning

    Source: Journal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 006
    Author:
    Mohamed A. Aboelseoud
    ,
    John J. Myers
    DOI: 10.1061/(ASCE)CC.1943-5614.0000696
    Publisher: American Society of Civil Engineers
    Abstract: The hybrid composite beam (HCB) is a novel idea that combines conventional construction materials (i.e., steel and concrete) with fiber-reinforced polymer (FRP) composites in a new configuration. This hybridization aims to optimize the beam’s structural performance and produce a structural element that is more durable than conventional members. This study examined the durability of a commercial glass FRP (GFRP) laminate that was used to encase the HCB elements in a recently constructed HCB bridge. The E-glass/vinyl ester laminate was subjected to five aging regimes. These conditioning regimes simulated an alkaline attack, a salt attack, a salt attack that was preceded by ultraviolet (UV) irradiation exposure, and sustained stresses that were accompanied by controlled thermal cycles and natural weathering. The durability of the E-glass/vinyl ester laminate was examined in terms of changes that occurred in the ultimate tensile strength. A microstructural analysis was performed on both unconditioned and conditioned specimens via optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and Fourier transform infrared (FTIR) spectroscopy. The microstructural analysis revealed that the hydroxide and chloride ions penetrated the laminate through the existing voids and cracks without causing hydrolysis to the vinyl ester resin. Both the alkaline and the salt solutions caused fiber-matrix debonding and reduced the glass fibers load-bearing through physico-chemical processes (leaching and the dissolution of fibers). The tensile strength was reduced greatly under the alkali attack. The mechanical testing and the microstructural analysis provided fundamental insight into the durability and stress corrosion mechanisms of the examined GFRP shell under different environmental effects. This information is valuable to enhance the GFRP shell’s durability.
    • Download: (16.53Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Durability of Hybrid Composite Beam Bridges Subjected to Various Environmental Conditioning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245369
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorMohamed A. Aboelseoud
    contributor authorJohn J. Myers
    date accessioned2017-12-30T13:04:43Z
    date available2017-12-30T13:04:43Z
    date issued2016
    identifier other%28ASCE%29CC.1943-5614.0000696.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245369
    description abstractThe hybrid composite beam (HCB) is a novel idea that combines conventional construction materials (i.e., steel and concrete) with fiber-reinforced polymer (FRP) composites in a new configuration. This hybridization aims to optimize the beam’s structural performance and produce a structural element that is more durable than conventional members. This study examined the durability of a commercial glass FRP (GFRP) laminate that was used to encase the HCB elements in a recently constructed HCB bridge. The E-glass/vinyl ester laminate was subjected to five aging regimes. These conditioning regimes simulated an alkaline attack, a salt attack, a salt attack that was preceded by ultraviolet (UV) irradiation exposure, and sustained stresses that were accompanied by controlled thermal cycles and natural weathering. The durability of the E-glass/vinyl ester laminate was examined in terms of changes that occurred in the ultimate tensile strength. A microstructural analysis was performed on both unconditioned and conditioned specimens via optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and Fourier transform infrared (FTIR) spectroscopy. The microstructural analysis revealed that the hydroxide and chloride ions penetrated the laminate through the existing voids and cracks without causing hydrolysis to the vinyl ester resin. Both the alkaline and the salt solutions caused fiber-matrix debonding and reduced the glass fibers load-bearing through physico-chemical processes (leaching and the dissolution of fibers). The tensile strength was reduced greatly under the alkali attack. The mechanical testing and the microstructural analysis provided fundamental insight into the durability and stress corrosion mechanisms of the examined GFRP shell under different environmental effects. This information is valuable to enhance the GFRP shell’s durability.
    publisherAmerican Society of Civil Engineers
    titleDurability of Hybrid Composite Beam Bridges Subjected to Various Environmental Conditioning
    typeJournal Paper
    journal volume20
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000696
    page04016045
    treeJournal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian