YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In-Plane Shear Performance of Masonry Walls after Strengthening by Two Different FRPs

    Source: Journal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 005
    Author:
    Ataur Rahman
    ,
    Tamon Ueda
    DOI: 10.1061/(ASCE)CC.1943-5614.0000661
    Publisher: American Society of Civil Engineers
    Abstract: This experimental study was aimed to investigate the in-plane shear performance of externally strengthened masonry walls using two types of fiber-reinforced polymer (FRP) sheets, namely, carbon FRP (CFRP) and polyethylene terephthalate-FRP (PET-FRP) sheets. Among these two, PET-FRP has a low tensile strength but possess a higher fracturing strain than CFRP. Twelve masonry walls made from clay brick were tested for static lateral loading under constant compression, after bonding CFRP and PET-FRP sheets onto their surfaces in three different configurations. The ultimate shear strength and deformation at peak load were the two important observations. The mechanisms by which load was carried were observed, varying from the initial uncracked state to the final, fully cracked state. The results demonstrate that a significant increase in the in-plane shear capacity of masonry can be achieved by bonding these two FRPs to the surface of the walls but ductility is compromised when CFRP is used. Walls retrofitting with PET-FRP in a crossdiagonal fashion show a good ductile behavior in both prepeak and postpeak regimes. The experimental data were used to assess the effectiveness of the strengthening of one FRP over the other. PET-FRP in diagonal configuration was found to be the most effective way of strengthening without compromising the two most essential aspects of masonry, that is, strength and ductility.
    • Download: (6.365Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In-Plane Shear Performance of Masonry Walls after Strengthening by Two Different FRPs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245346
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorAtaur Rahman
    contributor authorTamon Ueda
    date accessioned2017-12-30T13:04:33Z
    date available2017-12-30T13:04:33Z
    date issued2016
    identifier other%28ASCE%29CC.1943-5614.0000661.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245346
    description abstractThis experimental study was aimed to investigate the in-plane shear performance of externally strengthened masonry walls using two types of fiber-reinforced polymer (FRP) sheets, namely, carbon FRP (CFRP) and polyethylene terephthalate-FRP (PET-FRP) sheets. Among these two, PET-FRP has a low tensile strength but possess a higher fracturing strain than CFRP. Twelve masonry walls made from clay brick were tested for static lateral loading under constant compression, after bonding CFRP and PET-FRP sheets onto their surfaces in three different configurations. The ultimate shear strength and deformation at peak load were the two important observations. The mechanisms by which load was carried were observed, varying from the initial uncracked state to the final, fully cracked state. The results demonstrate that a significant increase in the in-plane shear capacity of masonry can be achieved by bonding these two FRPs to the surface of the walls but ductility is compromised when CFRP is used. Walls retrofitting with PET-FRP in a crossdiagonal fashion show a good ductile behavior in both prepeak and postpeak regimes. The experimental data were used to assess the effectiveness of the strengthening of one FRP over the other. PET-FRP in diagonal configuration was found to be the most effective way of strengthening without compromising the two most essential aspects of masonry, that is, strength and ductility.
    publisherAmerican Society of Civil Engineers
    titleIn-Plane Shear Performance of Masonry Walls after Strengthening by Two Different FRPs
    typeJournal Paper
    journal volume20
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000661
    page04016019
    treeJournal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian