YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Innovative Repair of Severely Corroded T-Beams Using Fabric-Reinforced Cementitious Matrix

    Source: Journal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 003
    Author:
    Tamer El-Maaddawy
    ,
    Ahmed El Refai
    DOI: 10.1061/(ASCE)CC.1943-5614.0000641
    Publisher: American Society of Civil Engineers
    Abstract: This paper offers an innovative technique for rehabilitation of severely corroded reinforced concrete (RC) T-beams using fabric-reinforced cementitious matrix (FRCM). Eight RC T-beam specimens were constructed and tested to failure under four-point load configuration. One beam was neither corroded nor repaired to act as a benchmark. Seven beams were presubjected to accelerated corrosion for 5 months that corresponded to an average tensile steel mass loss of 22%. Corrosion was restricted to the tensile steel located in the middle third of the beam span. Six corroded beams were repaired with either carbon or basalt FRCM system whereas one corroded beam was left unrepaired. The fabrics were internally embedded within the clear cover of the corroded-repaired region and/or externally bonded along the beam span. Corrosion damage significantly reduced the flexural capacity and ductility of the unrepaired beam. The basalt FRCM system could not restore the original flexural capacity of the beam whereas the carbon FRCM system fully restored the capacity. Doubling the amount of the internally embedded carbon FRCM layers slightly increased the strength gain but restored only 90% of the original beam ductility. The use of a combination of internally embedded and externally bonded carbon FRCM layers was more effective in improving the flexural response than the use of same amount of FRCM layers internally embedded within the corroded-repaired region.
    • Download: (10.25Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Innovative Repair of Severely Corroded T-Beams Using Fabric-Reinforced Cementitious Matrix

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245332
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorTamer El-Maaddawy
    contributor authorAhmed El Refai
    date accessioned2017-12-30T13:04:29Z
    date available2017-12-30T13:04:29Z
    date issued2016
    identifier other%28ASCE%29CC.1943-5614.0000641.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245332
    description abstractThis paper offers an innovative technique for rehabilitation of severely corroded reinforced concrete (RC) T-beams using fabric-reinforced cementitious matrix (FRCM). Eight RC T-beam specimens were constructed and tested to failure under four-point load configuration. One beam was neither corroded nor repaired to act as a benchmark. Seven beams were presubjected to accelerated corrosion for 5 months that corresponded to an average tensile steel mass loss of 22%. Corrosion was restricted to the tensile steel located in the middle third of the beam span. Six corroded beams were repaired with either carbon or basalt FRCM system whereas one corroded beam was left unrepaired. The fabrics were internally embedded within the clear cover of the corroded-repaired region and/or externally bonded along the beam span. Corrosion damage significantly reduced the flexural capacity and ductility of the unrepaired beam. The basalt FRCM system could not restore the original flexural capacity of the beam whereas the carbon FRCM system fully restored the capacity. Doubling the amount of the internally embedded carbon FRCM layers slightly increased the strength gain but restored only 90% of the original beam ductility. The use of a combination of internally embedded and externally bonded carbon FRCM layers was more effective in improving the flexural response than the use of same amount of FRCM layers internally embedded within the corroded-repaired region.
    publisherAmerican Society of Civil Engineers
    titleInnovative Repair of Severely Corroded T-Beams Using Fabric-Reinforced Cementitious Matrix
    typeJournal Paper
    journal volume20
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000641
    page04015073
    treeJournal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian