YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design, Development, and Testing of a Composite Roofing System

    Source: Journal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 002
    Author:
    Brandon Mintz
    ,
    Arindam Gan Chowdhury
    ,
    Amir Mirmiran
    ,
    Nakin Suksawang
    ,
    Ramtin Kargarmoakhar
    DOI: 10.1061/(ASCE)CC.1943-5614.0000605
    Publisher: American Society of Civil Engineers
    Abstract: Roofing is one of the most vulnerable parts of the building envelope in a residential structure, often damaged during extreme wind events such as hurricanes or tornadoes. Conventional roofing systems in residential buildings mostly consist of separate the main wind force resisting system (MWFRS) and components and cladding (C&C). High wind uplift forces often cause partial or full destruction of one or more of these elements, leading to water intrusion and losses of interior contents. This study focuses on the design, development, and testing of a new composite roofing system that integrates the functionalities of the MWFRS and C&C. The new system is composed of lightweight concrete panels reinforced with fiber-reinforced polymer mesh and rods. The architectural shape of a conventional residential roof with high profile tiles was adopted for the composite roof panels to help provide the requisite structural stiffness and strength of the MWFRS, while maintaining similar C&C aesthetics and avoiding failure of individual tiles that often become wind-borne debris. The panel system was subjected to a battery of tests under equivalent wind loads. In addition, three connections for the system were designed and validated through testing. The panel-to-wall connection provided ample continuity of the vertical load path; the panel to panel connection was found adequate for shear transfer; and the ridge connection allowed for load transfer between the windward and leeward sides of the roof. Tests demonstrated the structural viability of the new system as an alternative to conventional roofs, making it ideal for residential buildings in hurricane zones and tornado alleys. The purpose of the paper is to present details of the system and their structural reliability. Durability and constructibility issues, including cracking, are the object of future work.
    • Download: (6.348Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design, Development, and Testing of a Composite Roofing System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245309
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorBrandon Mintz
    contributor authorArindam Gan Chowdhury
    contributor authorAmir Mirmiran
    contributor authorNakin Suksawang
    contributor authorRamtin Kargarmoakhar
    date accessioned2017-12-30T13:04:20Z
    date available2017-12-30T13:04:20Z
    date issued2016
    identifier other%28ASCE%29CC.1943-5614.0000605.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245309
    description abstractRoofing is one of the most vulnerable parts of the building envelope in a residential structure, often damaged during extreme wind events such as hurricanes or tornadoes. Conventional roofing systems in residential buildings mostly consist of separate the main wind force resisting system (MWFRS) and components and cladding (C&C). High wind uplift forces often cause partial or full destruction of one or more of these elements, leading to water intrusion and losses of interior contents. This study focuses on the design, development, and testing of a new composite roofing system that integrates the functionalities of the MWFRS and C&C. The new system is composed of lightweight concrete panels reinforced with fiber-reinforced polymer mesh and rods. The architectural shape of a conventional residential roof with high profile tiles was adopted for the composite roof panels to help provide the requisite structural stiffness and strength of the MWFRS, while maintaining similar C&C aesthetics and avoiding failure of individual tiles that often become wind-borne debris. The panel system was subjected to a battery of tests under equivalent wind loads. In addition, three connections for the system were designed and validated through testing. The panel-to-wall connection provided ample continuity of the vertical load path; the panel to panel connection was found adequate for shear transfer; and the ridge connection allowed for load transfer between the windward and leeward sides of the roof. Tests demonstrated the structural viability of the new system as an alternative to conventional roofs, making it ideal for residential buildings in hurricane zones and tornado alleys. The purpose of the paper is to present details of the system and their structural reliability. Durability and constructibility issues, including cracking, are the object of future work.
    publisherAmerican Society of Civil Engineers
    titleDesign, Development, and Testing of a Composite Roofing System
    typeJournal Paper
    journal volume20
    journal issue2
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000605
    page04015052
    treeJournal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian