YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Modeling of Suction and Trench Formation at the Touchdown Zone of Steel Catenary Riser

    Source: International Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 001
    Author:
    Bipul Hawlader
    ,
    Anup Fouzder
    ,
    Sujan Dutta
    DOI: 10.1061/(ASCE)GM.1943-5622.0000497
    Publisher: American Society of Civil Engineers
    Abstract: Steel catenary risers (SCR) are widely used in deepwater oil and gas production. The riser–seabed–water interaction near the touchdown zone is one of the main concerns in the design of fatigue life of SCR. During upward displacement, suction develops under the riser and a trench might be formed when it separates from the seabed near the touchdown point. In the subsequent downward movement, the riser penetrates through this trench to the seabed. Therefore, modeling of suction and trench formation is very important. In the existing models available in the literature for uplift resistance, these factors are incorporated using empirical relationships. It is also recognized that the available finite-element (FE) modeling techniques for this large-deformation problem are computationally very expensive, although penetration behavior can be simulated. In the present research program, both penetration and uplift behavior are simulated using FE and computational fluid dynamics (CFD) approaches. The simulation results for penetration are presented in Hawlader et al. (2014). In this paper, CFD simulations of uplift resistance, suction and trench formation using ANSYS CFX are discussed. A new model for undrained shear strength of soft clay is proposed that is applicable to a wide range of shear strain rates. The effects of strain rate and strength degradation are incorporated properly in ANSYS CFX and simulations are performed for one penetration-uplift cycle. Comparing with empirical models developed from experimental results and also with FE results for idealized conditions, it is shown that the present CFX model can simulate the suction and uplift resistance. Moreover, the CFX model developed in this study using the subdomain approach is computationally very efficient. The suction under the riser is the main source of uplift resistance for shallow embedments. The parametric study shows that the maximum uplift resistance and depth of trench depend on uplift velocity and the undrained shear strength of clay.
    • Download: (1.825Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Modeling of Suction and Trench Formation at the Touchdown Zone of Steel Catenary Riser

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245292
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorBipul Hawlader
    contributor authorAnup Fouzder
    contributor authorSujan Dutta
    date accessioned2017-12-30T13:04:09Z
    date available2017-12-30T13:04:09Z
    date issued2016
    identifier other%28ASCE%29GM.1943-5622.0000497.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245292
    description abstractSteel catenary risers (SCR) are widely used in deepwater oil and gas production. The riser–seabed–water interaction near the touchdown zone is one of the main concerns in the design of fatigue life of SCR. During upward displacement, suction develops under the riser and a trench might be formed when it separates from the seabed near the touchdown point. In the subsequent downward movement, the riser penetrates through this trench to the seabed. Therefore, modeling of suction and trench formation is very important. In the existing models available in the literature for uplift resistance, these factors are incorporated using empirical relationships. It is also recognized that the available finite-element (FE) modeling techniques for this large-deformation problem are computationally very expensive, although penetration behavior can be simulated. In the present research program, both penetration and uplift behavior are simulated using FE and computational fluid dynamics (CFD) approaches. The simulation results for penetration are presented in Hawlader et al. (2014). In this paper, CFD simulations of uplift resistance, suction and trench formation using ANSYS CFX are discussed. A new model for undrained shear strength of soft clay is proposed that is applicable to a wide range of shear strain rates. The effects of strain rate and strength degradation are incorporated properly in ANSYS CFX and simulations are performed for one penetration-uplift cycle. Comparing with empirical models developed from experimental results and also with FE results for idealized conditions, it is shown that the present CFX model can simulate the suction and uplift resistance. Moreover, the CFX model developed in this study using the subdomain approach is computationally very efficient. The suction under the riser is the main source of uplift resistance for shallow embedments. The parametric study shows that the maximum uplift resistance and depth of trench depend on uplift velocity and the undrained shear strength of clay.
    publisherAmerican Society of Civil Engineers
    titleNumerical Modeling of Suction and Trench Formation at the Touchdown Zone of Steel Catenary Riser
    typeJournal Paper
    journal volume16
    journal issue1
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000497
    page04015033
    treeInternational Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian