YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vector Form Intrinsic Finite-Element Analysis for Train and Bridge Dynamic Interaction

    Source: Journal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 001
    Author:
    Y. F. Duan
    ,
    S. M. Wang
    ,
    R. Z. Wang
    ,
    C. Y. Wang
    ,
    J. Y. Shih
    ,
    C. B. Yun
    DOI: 10.1061/(ASCE)BE.1943-5592.0001171
    Publisher: American Society of Civil Engineers
    Abstract: A computationally efficient method is proposed for analyzing train and bridge dynamic interaction responses based on the vector form intrinsic finite-element method. The proposed method does not need to establish a large number of complicated dynamic coupling equations for the train and bridge, in contrast to the traditional finite-element method. A train with multiple cars traveling over a railway bridge with multiple spans was analyzed, and two computational models were considered: two-axle and coach models. The effects of rail irregularity and rail ballast were also considered. In the proposed method, the bridge is modeled as mass particles linked by a series of massless beam elements, and the train is simulated by mass particles. The motions of the mass particles are governed by Newton’s second law, and the central difference scheme is employed to solve the equation of motion for each mass particle. The fictitious reverse-motion procedure is employed to obtain the pure deformations of the massless beam elements, from which the internal forces exerted on the mass particles are evaluated. Assembly of the global stiffness matrix is avoided, and each mass-particle motion is calculated independently, which makes the proposed method easy and efficient. Compared with existing analytical and numerical methods, the proposed method provides simpler modeling of the dynamic interaction between the train and bridge and more efficient computation. Furthermore, the proposed method can yield very accurate results.
    • Download: (2.424Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vector Form Intrinsic Finite-Element Analysis for Train and Bridge Dynamic Interaction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245256
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorY. F. Duan
    contributor authorS. M. Wang
    contributor authorR. Z. Wang
    contributor authorC. Y. Wang
    contributor authorJ. Y. Shih
    contributor authorC. B. Yun
    date accessioned2017-12-30T13:03:59Z
    date available2017-12-30T13:03:59Z
    date issued2018
    identifier other%28ASCE%29BE.1943-5592.0001171.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245256
    description abstractA computationally efficient method is proposed for analyzing train and bridge dynamic interaction responses based on the vector form intrinsic finite-element method. The proposed method does not need to establish a large number of complicated dynamic coupling equations for the train and bridge, in contrast to the traditional finite-element method. A train with multiple cars traveling over a railway bridge with multiple spans was analyzed, and two computational models were considered: two-axle and coach models. The effects of rail irregularity and rail ballast were also considered. In the proposed method, the bridge is modeled as mass particles linked by a series of massless beam elements, and the train is simulated by mass particles. The motions of the mass particles are governed by Newton’s second law, and the central difference scheme is employed to solve the equation of motion for each mass particle. The fictitious reverse-motion procedure is employed to obtain the pure deformations of the massless beam elements, from which the internal forces exerted on the mass particles are evaluated. Assembly of the global stiffness matrix is avoided, and each mass-particle motion is calculated independently, which makes the proposed method easy and efficient. Compared with existing analytical and numerical methods, the proposed method provides simpler modeling of the dynamic interaction between the train and bridge and more efficient computation. Furthermore, the proposed method can yield very accurate results.
    publisherAmerican Society of Civil Engineers
    titleVector Form Intrinsic Finite-Element Analysis for Train and Bridge Dynamic Interaction
    typeJournal Paper
    journal volume23
    journal issue1
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001171
    page04017126
    treeJournal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian