YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimum Combination of Bridge and Deck Systems for Superspan Cable-Stayed Bridges

    Source: Journal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 001
    Author:
    Yi Shao
    ,
    Xudong Shao
    ,
    Lifeng Li
    ,
    Jiajia Wu
    DOI: 10.1061/(ASCE)BE.1943-5592.0001161
    Publisher: American Society of Civil Engineers
    Abstract: The huge axial force in the main girder challenges the design of superspan cable-stayed bridges. To reduce the self-weight of the girder, the conventional orthotropic steel deck (OSD) system is widely adopted due to its high strength-to-weight ratio, which may generate fatigue problems. In this paper, the optimum combination of different bridge and deck systems was studied by designing a cable-stayed bridge with main span of 1,480 m. Two different bridge systems were investigated: the conventional cable-stayed bridge system and a partial ground-anchored cable-stayed bridge system with crossing stay cables (the new bridge system). Additionally, in each bridge system, three different deck systems were studied: the OSD system, a composite deck system composed of the OSD system and an ultrahigh-performance concrete (UHPC) layer, and an UHPC waffle deck panel system. Finite-element (FE) models of the six plans were developed and analyzed. The static, dynamic, and economic performances of the six plans were compared. Model tests of the composite and UHPC waffle panel systems were performed to ensure the feasibility of the design. Compared to the conventional bridge system, the new bridge system has a much smaller axial force in the main girder, greater longitudinal stiffness, and economic advantages. Under the traffic load, a much lower stress amplitude is developed in the girder with the UHPC waffle deck panel system than in girders with the other two deck systems. Compared to the OSD system, the composite and UHPC waffle panel systems are advantageous in terms of lifecycle cost. Therefore, the combination of the new bridge system and the UHPC waffle deck panel system is recommended as the optimal design plan.
    • Download: (3.750Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimum Combination of Bridge and Deck Systems for Superspan Cable-Stayed Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245250
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorYi Shao
    contributor authorXudong Shao
    contributor authorLifeng Li
    contributor authorJiajia Wu
    date accessioned2017-12-30T13:03:57Z
    date available2017-12-30T13:03:57Z
    date issued2018
    identifier other%28ASCE%29BE.1943-5592.0001161.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245250
    description abstractThe huge axial force in the main girder challenges the design of superspan cable-stayed bridges. To reduce the self-weight of the girder, the conventional orthotropic steel deck (OSD) system is widely adopted due to its high strength-to-weight ratio, which may generate fatigue problems. In this paper, the optimum combination of different bridge and deck systems was studied by designing a cable-stayed bridge with main span of 1,480 m. Two different bridge systems were investigated: the conventional cable-stayed bridge system and a partial ground-anchored cable-stayed bridge system with crossing stay cables (the new bridge system). Additionally, in each bridge system, three different deck systems were studied: the OSD system, a composite deck system composed of the OSD system and an ultrahigh-performance concrete (UHPC) layer, and an UHPC waffle deck panel system. Finite-element (FE) models of the six plans were developed and analyzed. The static, dynamic, and economic performances of the six plans were compared. Model tests of the composite and UHPC waffle panel systems were performed to ensure the feasibility of the design. Compared to the conventional bridge system, the new bridge system has a much smaller axial force in the main girder, greater longitudinal stiffness, and economic advantages. Under the traffic load, a much lower stress amplitude is developed in the girder with the UHPC waffle deck panel system than in girders with the other two deck systems. Compared to the OSD system, the composite and UHPC waffle panel systems are advantageous in terms of lifecycle cost. Therefore, the combination of the new bridge system and the UHPC waffle deck panel system is recommended as the optimal design plan.
    publisherAmerican Society of Civil Engineers
    titleOptimum Combination of Bridge and Deck Systems for Superspan Cable-Stayed Bridges
    typeJournal Paper
    journal volume23
    journal issue1
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001161
    page04017112
    treeJournal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian