YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    WIM-Based Live-Load Model for Advanced Analysis of Simply Supported Short- and Medium-Span Highway Bridges

    Source: Journal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 010
    Author:
    Giorgio Anitori
    ,
    Joan R. Casas
    ,
    Michel Ghosn
    DOI: 10.1061/(ASCE)BE.1943-5592.0001081
    Publisher: American Society of Civil Engineers
    Abstract: The accuracy of bridge system safety evaluations and reliability assessments obtained through refined structural analysis procedures depends on the proper modeling of traffic load effects. While the live-load models specified in AASHTO procedures were calibrated for use in combination with approximate analysis methods and load-distribution factors commonly used in the United States, these existing models may not produce accurate results when used in association with advanced finite-element analyses of bridge structures. This paper proposes a procedure for calibrating appropriate live-load models that can be used for advanced analyses of multigirder bridges. The calibration procedure is demonstrated using actual truck data collected at a representative set of weigh-in-motion (WIM) stations in New York State. Extreme value theory was used to project traffic-load effects to different service periods. The results are presented as live-load models developed for a 5-year typical rating interval and for a 75-year design life. The outcome of the calibration indicates that maximum traffic-load effects can be calculated using finite-element models with the help of a single truck for short to medium one-lane multigirder bridges and two side-by-side truck configurations for multilane bridges. The proposed analysis trucks have axle configurations of the standard AASHTO 3-S2 and Type 3 legal rating trucks with appropriate factors to amplify their nominal weights. The amplification factors reflected the presence of overweight trucks in the traffic stream and the probability of multiple presence. The proposed live-load models are readily implementable for deterministic refined analyses of highway bridges and for evaluating the reliability of bridges at ultimate limit states considering the system’s behavior.
    • Download: (1.441Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      WIM-Based Live-Load Model for Advanced Analysis of Simply Supported Short- and Medium-Span Highway Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245229
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorGiorgio Anitori
    contributor authorJoan R. Casas
    contributor authorMichel Ghosn
    date accessioned2017-12-30T13:03:52Z
    date available2017-12-30T13:03:52Z
    date issued2017
    identifier other%28ASCE%29BE.1943-5592.0001081.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245229
    description abstractThe accuracy of bridge system safety evaluations and reliability assessments obtained through refined structural analysis procedures depends on the proper modeling of traffic load effects. While the live-load models specified in AASHTO procedures were calibrated for use in combination with approximate analysis methods and load-distribution factors commonly used in the United States, these existing models may not produce accurate results when used in association with advanced finite-element analyses of bridge structures. This paper proposes a procedure for calibrating appropriate live-load models that can be used for advanced analyses of multigirder bridges. The calibration procedure is demonstrated using actual truck data collected at a representative set of weigh-in-motion (WIM) stations in New York State. Extreme value theory was used to project traffic-load effects to different service periods. The results are presented as live-load models developed for a 5-year typical rating interval and for a 75-year design life. The outcome of the calibration indicates that maximum traffic-load effects can be calculated using finite-element models with the help of a single truck for short to medium one-lane multigirder bridges and two side-by-side truck configurations for multilane bridges. The proposed analysis trucks have axle configurations of the standard AASHTO 3-S2 and Type 3 legal rating trucks with appropriate factors to amplify their nominal weights. The amplification factors reflected the presence of overweight trucks in the traffic stream and the probability of multiple presence. The proposed live-load models are readily implementable for deterministic refined analyses of highway bridges and for evaluating the reliability of bridges at ultimate limit states considering the system’s behavior.
    publisherAmerican Society of Civil Engineers
    titleWIM-Based Live-Load Model for Advanced Analysis of Simply Supported Short- and Medium-Span Highway Bridges
    typeJournal Paper
    journal volume22
    journal issue10
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001081
    page04017062
    treeJournal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian