YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Performance of a Lightweight Composite Bridge Deck with Open Ribs

    Source: Journal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 007
    Author:
    Shihong Zhang
    ,
    Xudong Shao
    ,
    Junhui Cao
    ,
    Jianfeng Cui
    ,
    Jianhua Hu
    ,
    Lu Deng
    DOI: 10.1061/(ASCE)BE.1943-5592.0000905
    Publisher: American Society of Civil Engineers
    Abstract: An innovative lightweight composite deck (LWCD) is proposed for steel bridges to avoid premature fatigue cracking. The composite deck is composed of an open-ribbed orthotropic steel deck (OSD) and a thin ultrahigh-performance concrete (UHPC) layer. This study is based on a suspension steel bridge in China, namely, the Second Dongting Lake Bridge. The following investigations were performed: (1) preliminary finite-element analysis (FEA) was carried out to evaluate the vehicle-induced stress ranges (i.e., Δσ = σmax − σmin) of six typical fatigue-prone details; (2) parameter analyses were performed to investigate the effects of the shape of cutouts and the thickness of the floor beams; and (3) two fatigue tests, one that used a full-scale LWCD panel and another that used a LWCD beam specimen, were conducted to reveal fatigue performance of the OSD and the stud shear connectors, respectively. Results of the preliminary FEA show that, with the contribution of the UHPC layer, the vehicle-induced stress ranges at some fatigue details of the LWCD, such as the rib–deck plate welded joints and the splice welds of the longitudinal ribs, were reduced to be less than their constant-amplitude fatigue limits, which indicates theoretically infinite fatigue lives of these details. The parameter analyses reveal that the apple-shaped cutout had relative good fatigue properties among the four cutout schemes and that the thickness of the floor beams is recommended to be 14–18 mm. According to the fatigue tests on the composite panel specimen and on the composite beam specimen, both the open-ribbed OSD and the stud shear connectors exhibited satisfactory fatigue endurances, which were much greater than 2 million cycles. The current theoretical and experimental investigations reveal that the proposed open-ribbed LWCD has favorable fatigue performances.
    • Download: (2.107Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Performance of a Lightweight Composite Bridge Deck with Open Ribs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245189
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorShihong Zhang
    contributor authorXudong Shao
    contributor authorJunhui Cao
    contributor authorJianfeng Cui
    contributor authorJianhua Hu
    contributor authorLu Deng
    date accessioned2017-12-30T13:03:42Z
    date available2017-12-30T13:03:42Z
    date issued2016
    identifier other%28ASCE%29BE.1943-5592.0000905.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245189
    description abstractAn innovative lightweight composite deck (LWCD) is proposed for steel bridges to avoid premature fatigue cracking. The composite deck is composed of an open-ribbed orthotropic steel deck (OSD) and a thin ultrahigh-performance concrete (UHPC) layer. This study is based on a suspension steel bridge in China, namely, the Second Dongting Lake Bridge. The following investigations were performed: (1) preliminary finite-element analysis (FEA) was carried out to evaluate the vehicle-induced stress ranges (i.e., Δσ = σmax − σmin) of six typical fatigue-prone details; (2) parameter analyses were performed to investigate the effects of the shape of cutouts and the thickness of the floor beams; and (3) two fatigue tests, one that used a full-scale LWCD panel and another that used a LWCD beam specimen, were conducted to reveal fatigue performance of the OSD and the stud shear connectors, respectively. Results of the preliminary FEA show that, with the contribution of the UHPC layer, the vehicle-induced stress ranges at some fatigue details of the LWCD, such as the rib–deck plate welded joints and the splice welds of the longitudinal ribs, were reduced to be less than their constant-amplitude fatigue limits, which indicates theoretically infinite fatigue lives of these details. The parameter analyses reveal that the apple-shaped cutout had relative good fatigue properties among the four cutout schemes and that the thickness of the floor beams is recommended to be 14–18 mm. According to the fatigue tests on the composite panel specimen and on the composite beam specimen, both the open-ribbed OSD and the stud shear connectors exhibited satisfactory fatigue endurances, which were much greater than 2 million cycles. The current theoretical and experimental investigations reveal that the proposed open-ribbed LWCD has favorable fatigue performances.
    publisherAmerican Society of Civil Engineers
    titleFatigue Performance of a Lightweight Composite Bridge Deck with Open Ribs
    typeJournal Paper
    journal volume21
    journal issue7
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0000905
    page04016039
    treeJournal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian