YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Direct Integration Algorithms for Efficient Nonlinear Seismic Response of Reinforced Concrete Highway Bridges

    Source: Journal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 007
    Author:
    Xiao Liang
    ,
    Khalid M. Mosalam
    ,
    Selim Günay
    DOI: 10.1061/(ASCE)BE.1943-5592.0000895
    Publisher: American Society of Civil Engineers
    Abstract: Reinforced concrete (RC) highway bridges are essential lifeline structures, especially in California, which has numerous active faults at which earthquakes are common occurrences. Accurate seismic structural analysis is important to ensure their safety. The most suitable analytical simulation method for this purpose is nonlinear time-history analysis (NTHA). However, one of the main challenges for NTHA is related to the convergence of the numerical solution, which usually arises at high levels of nonlinearity. Inherent lack of high degrees of redundancy of the bridge systems and the need for their continuous functioning in the aftermath of an earthquake require accurate modeling and robust numerical solutions for the response investigation of these important structures. This paper presents solutions to the problems of convergence encountered in NTHA of RC highway bridges during the use of direct integration algorithms. The considered numerical integration algorithms include two that are explicit, namely, the Newmark and operator-splitting algorithms, and one that is implicit, namely, the TRBDF2 algorithm. Applicability of these integration algorithms, instead of the commonly used implicit Newmark, is explored for three representative RC highway bridges in California. Furthermore, the suitability of an adaptive switching among these integration algorithms during the NTHA is investigated. Finally, the efficacy of the solutions is demonstrated for a challenging performance-based earthquake engineering-related subject that involves a large number of NTHAs to identify the predominantly first-mode engineering demand parameters.
    • Download: (1.764Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Direct Integration Algorithms for Efficient Nonlinear Seismic Response of Reinforced Concrete Highway Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245185
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorXiao Liang
    contributor authorKhalid M. Mosalam
    contributor authorSelim Günay
    date accessioned2017-12-30T13:03:41Z
    date available2017-12-30T13:03:41Z
    date issued2016
    identifier other%28ASCE%29BE.1943-5592.0000895.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245185
    description abstractReinforced concrete (RC) highway bridges are essential lifeline structures, especially in California, which has numerous active faults at which earthquakes are common occurrences. Accurate seismic structural analysis is important to ensure their safety. The most suitable analytical simulation method for this purpose is nonlinear time-history analysis (NTHA). However, one of the main challenges for NTHA is related to the convergence of the numerical solution, which usually arises at high levels of nonlinearity. Inherent lack of high degrees of redundancy of the bridge systems and the need for their continuous functioning in the aftermath of an earthquake require accurate modeling and robust numerical solutions for the response investigation of these important structures. This paper presents solutions to the problems of convergence encountered in NTHA of RC highway bridges during the use of direct integration algorithms. The considered numerical integration algorithms include two that are explicit, namely, the Newmark and operator-splitting algorithms, and one that is implicit, namely, the TRBDF2 algorithm. Applicability of these integration algorithms, instead of the commonly used implicit Newmark, is explored for three representative RC highway bridges in California. Furthermore, the suitability of an adaptive switching among these integration algorithms during the NTHA is investigated. Finally, the efficacy of the solutions is demonstrated for a challenging performance-based earthquake engineering-related subject that involves a large number of NTHAs to identify the predominantly first-mode engineering demand parameters.
    publisherAmerican Society of Civil Engineers
    titleDirect Integration Algorithms for Efficient Nonlinear Seismic Response of Reinforced Concrete Highway Bridges
    typeJournal Paper
    journal volume21
    journal issue7
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0000895
    page04016041
    treeJournal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian