YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance of Pedestrian-Load Models through Experimental Studies on Lightweight Aluminum Bridges

    Source: Journal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 008
    Author:
    P. Dey
    ,
    A. Sychterz
    ,
    S. Narasimhan
    ,
    S. Walbridge
    DOI: 10.1061/(ASCE)BE.1943-5592.0000824
    Publisher: American Society of Civil Engineers
    Abstract: Aluminum structures provide a high strength-to-weight ratio, are corrosion resistant, and are esthetically pleasing. Hence, their use in bridge construction has recently begun to increase, especially for pedestrian bridges. Because of their relative light weight as compared with other structures, they often exhibit fundamental vertical frequencies outside the range of normal pedestrian walking frequencies. Despite this, they tend to be lively structures, easily excited by pedestrians, resulting in large-amplitude accelerations. An experimental program was undertaken by the authors to study the vibration characteristics and performance of three full-scale aluminum pedestrian bridges, two in the laboratory and one in the field. Although the lowest fundamental frequencies for all three bridges fall outside the normal range of pedestrian walking frequencies, there is the possibility of higher harmonics of walking loads near resonance or in resonance with the fundamental vertical mode. The aluminum bridges studied were instrumented and subjected to a range of pedestrian-load tests to understand the performance of existing periodic models in predicting the dynamic response. The performance of these models (assuming pedestrian forces to be a summation of harmonics) has thus far only been assessed for cases in which the fundamental frequency is resonant with the first harmonic of walking, often considered the most severe case for design. This is the first time, to the knowledge of the authors, that these models have been studied for the case of bridges that are nonresonant with the fundamental mode. This article notes important observations regarding the performance of these models in predicting the serviceability of bridges made out of lightweight materials, such as aluminum, for cases in which the higher harmonics of pedestrian walking are either nonresonant or near resonance with the fundamental vertical flexure mode.
    • Download: (1.216Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance of Pedestrian-Load Models through Experimental Studies on Lightweight Aluminum Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245151
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorP. Dey
    contributor authorA. Sychterz
    contributor authorS. Narasimhan
    contributor authorS. Walbridge
    date accessioned2017-12-30T13:03:32Z
    date available2017-12-30T13:03:32Z
    date issued2016
    identifier other%28ASCE%29BE.1943-5592.0000824.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245151
    description abstractAluminum structures provide a high strength-to-weight ratio, are corrosion resistant, and are esthetically pleasing. Hence, their use in bridge construction has recently begun to increase, especially for pedestrian bridges. Because of their relative light weight as compared with other structures, they often exhibit fundamental vertical frequencies outside the range of normal pedestrian walking frequencies. Despite this, they tend to be lively structures, easily excited by pedestrians, resulting in large-amplitude accelerations. An experimental program was undertaken by the authors to study the vibration characteristics and performance of three full-scale aluminum pedestrian bridges, two in the laboratory and one in the field. Although the lowest fundamental frequencies for all three bridges fall outside the normal range of pedestrian walking frequencies, there is the possibility of higher harmonics of walking loads near resonance or in resonance with the fundamental vertical mode. The aluminum bridges studied were instrumented and subjected to a range of pedestrian-load tests to understand the performance of existing periodic models in predicting the dynamic response. The performance of these models (assuming pedestrian forces to be a summation of harmonics) has thus far only been assessed for cases in which the fundamental frequency is resonant with the first harmonic of walking, often considered the most severe case for design. This is the first time, to the knowledge of the authors, that these models have been studied for the case of bridges that are nonresonant with the fundamental mode. This article notes important observations regarding the performance of these models in predicting the serviceability of bridges made out of lightweight materials, such as aluminum, for cases in which the higher harmonics of pedestrian walking are either nonresonant or near resonance with the fundamental vertical flexure mode.
    publisherAmerican Society of Civil Engineers
    titlePerformance of Pedestrian-Load Models through Experimental Studies on Lightweight Aluminum Bridges
    typeJournal Paper
    journal volume21
    journal issue8
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0000824
    pageC4015005
    treeJournal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian