YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessing the Lifecycle Sustainability Costs and Benefits of Seismic Mitigation Designs for Buildings

    Source: Journal of Architectural Engineering:;2016:;Volume ( 022 ):;issue: 001
    Author:
    Hsi-Hsien Wei
    ,
    Igal M. Shohet
    ,
    Mirosław J. Skibniewski
    ,
    Stav Shapira
    ,
    Xijun Yao
    DOI: 10.1061/(ASCE)AE.1943-5568.0000188
    Publisher: American Society of Civil Engineers
    Abstract: A complete sustainable-performance analysis that takes into consideration the whole of the triple bottom line of sustainability is necessary when one needs to balance social, economic, and environmental impacts in an optimal cost-effective design based fundamentally on sustainability performance objectives. This study introduces a methodology that can translate seismic building damage into clearly quantifiable social, economic, and environmental impacts, which can be used when selecting repair methods appropriate for various states of building damage and for the local economic and environmental situation. The authors also propose a lifecycle-assessment framework with which one can evaluate the costs and benefits associated with a seismic design over the lifecycle of a building. Two case studies are presented. The first case assesses the sustainability performance of a single RC building under seismic risk. The second case, taking into account the uncertainty associated with seismic events, comprises a risk-based cost-benefit analysis of the desirability, in terms of the three sustainability metrics (separately and in combination), of two seismic retrofit designs on a regional scale. A comparison of the relative merits of the two proposed retrofit designs revealed that preventing buildings from becoming irreparably damaged plays an important role in increasing the cost-efficiency of a retrofit design. These findings also indicate that, although neither design can be considered feasible with respect to the three sustainability metrics individually, the lower-cost/lower-resistance design is justifiable if measured by the combined benefit from all three metrics, expressed in monetary terms. This finding emphasizes the necessity of a complete sustainable-performance analysis for achieving a cost-effective design. Finally, when comparing all three metrics in monetary terms, the savings associated with the reduction in fatalities contribute the most to the total expected benefit of a retrofit project, followed by reduced repair costs and reduced CO2 emissions.
    • Download: (572.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessing the Lifecycle Sustainability Costs and Benefits of Seismic Mitigation Designs for Buildings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245076
    Collections
    • Journal of Architectural Engineering

    Show full item record

    contributor authorHsi-Hsien Wei
    contributor authorIgal M. Shohet
    contributor authorMirosław J. Skibniewski
    contributor authorStav Shapira
    contributor authorXijun Yao
    date accessioned2017-12-30T13:03:13Z
    date available2017-12-30T13:03:13Z
    date issued2016
    identifier other%28ASCE%29AE.1943-5568.0000188.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245076
    description abstractA complete sustainable-performance analysis that takes into consideration the whole of the triple bottom line of sustainability is necessary when one needs to balance social, economic, and environmental impacts in an optimal cost-effective design based fundamentally on sustainability performance objectives. This study introduces a methodology that can translate seismic building damage into clearly quantifiable social, economic, and environmental impacts, which can be used when selecting repair methods appropriate for various states of building damage and for the local economic and environmental situation. The authors also propose a lifecycle-assessment framework with which one can evaluate the costs and benefits associated with a seismic design over the lifecycle of a building. Two case studies are presented. The first case assesses the sustainability performance of a single RC building under seismic risk. The second case, taking into account the uncertainty associated with seismic events, comprises a risk-based cost-benefit analysis of the desirability, in terms of the three sustainability metrics (separately and in combination), of two seismic retrofit designs on a regional scale. A comparison of the relative merits of the two proposed retrofit designs revealed that preventing buildings from becoming irreparably damaged plays an important role in increasing the cost-efficiency of a retrofit design. These findings also indicate that, although neither design can be considered feasible with respect to the three sustainability metrics individually, the lower-cost/lower-resistance design is justifiable if measured by the combined benefit from all three metrics, expressed in monetary terms. This finding emphasizes the necessity of a complete sustainable-performance analysis for achieving a cost-effective design. Finally, when comparing all three metrics in monetary terms, the savings associated with the reduction in fatalities contribute the most to the total expected benefit of a retrofit project, followed by reduced repair costs and reduced CO2 emissions.
    publisherAmerican Society of Civil Engineers
    titleAssessing the Lifecycle Sustainability Costs and Benefits of Seismic Mitigation Designs for Buildings
    typeJournal Paper
    journal volume22
    journal issue1
    journal titleJournal of Architectural Engineering
    identifier doi10.1061/(ASCE)AE.1943-5568.0000188
    page04015011
    treeJournal of Architectural Engineering:;2016:;Volume ( 022 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian