YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Health Monitoring and Model Updating of Aizhai Suspension Bridge

    Source: Journal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 002
    Author:
    Sheng Yu
    ,
    Jinping Ou
    DOI: 10.1061/(ASCE)AS.1943-5525.0000653
    Publisher: American Society of Civil Engineers
    Abstract: A complete structural health monitoring system has been implemented on Aizhai Suspension Bridge for monitoring its health status and assessing its safety for long-term services. This system consists of nearly 112 sensors of various types, including four subsystems: automatic data collection subsystem, artificial maintenance management subsystem, early safety warning and comprehensive assessment subsystem, and centralized database management subsystem. The deployments and functions of this structural health monitoring system are first introduced in this paper. Then, a finite-element model updating method, which combines the substructure method with the response surface model updating method, is proposed to reconstruct the actual working state of this suspension bridge in the early safety warning and comprehensive assessment subsystem. In the remaining part, the temperature fields, strain responses, tension forces of the hangers, longitudinal displacements of the stiffening girder, and the meteorological temperature are analyzed. Through the statistical analysis, the relationship between the temperature fields was found; the temperature fields induced strains of the stiffening girder satisfies the linear relationship. The cumulative probability distribution function of the cycle-index of the same daily stress amplitude follows a Weibull distribution. The monitored relative longitudinal displacements of the stiffening girder are linearly related with the meteorological temperatures. The monitored tension forces of the hangers verify the effects of the suspender-free zones of main cables on the normal hangers for this pylon-girder detached suspension bridge.
    • Download: (10.38Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Health Monitoring and Model Updating of Aizhai Suspension Bridge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245012
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorSheng Yu
    contributor authorJinping Ou
    date accessioned2017-12-30T13:02:59Z
    date available2017-12-30T13:02:59Z
    date issued2017
    identifier other%28ASCE%29AS.1943-5525.0000653.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245012
    description abstractA complete structural health monitoring system has been implemented on Aizhai Suspension Bridge for monitoring its health status and assessing its safety for long-term services. This system consists of nearly 112 sensors of various types, including four subsystems: automatic data collection subsystem, artificial maintenance management subsystem, early safety warning and comprehensive assessment subsystem, and centralized database management subsystem. The deployments and functions of this structural health monitoring system are first introduced in this paper. Then, a finite-element model updating method, which combines the substructure method with the response surface model updating method, is proposed to reconstruct the actual working state of this suspension bridge in the early safety warning and comprehensive assessment subsystem. In the remaining part, the temperature fields, strain responses, tension forces of the hangers, longitudinal displacements of the stiffening girder, and the meteorological temperature are analyzed. Through the statistical analysis, the relationship between the temperature fields was found; the temperature fields induced strains of the stiffening girder satisfies the linear relationship. The cumulative probability distribution function of the cycle-index of the same daily stress amplitude follows a Weibull distribution. The monitored relative longitudinal displacements of the stiffening girder are linearly related with the meteorological temperatures. The monitored tension forces of the hangers verify the effects of the suspender-free zones of main cables on the normal hangers for this pylon-girder detached suspension bridge.
    publisherAmerican Society of Civil Engineers
    titleStructural Health Monitoring and Model Updating of Aizhai Suspension Bridge
    typeJournal Paper
    journal volume30
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000653
    pageB4016009
    treeJournal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian