YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimization of Spacing for Oscillating Wave Surge Converter Arrays Using Genetic Algorithm

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2017:;Volume ( 143 ):;issue: 002
    Author:
    Zhi Yung Tay
    ,
    Vengatesan Venugopal
    DOI: 10.1061/(ASCE)WW.1943-5460.0000368
    Publisher: American Society of Civil Engineers
    Abstract: The oscillating wave surge converter (OWSC) is a type of ocean wave power device typically consisting of a flap, or arm, hinged at the bottom to allow forward and backward movement by surging waves, and is efficient in generating electricity from waves due to its capability in operating at a wide range of wave spectra. The power generated from the OWSC could be further maximized by arranging the devices in an array at their optimal spacing. This paper addresses the optimization of device configuration within an array by using the genetic algorithm (GA) scheme, for which the spacings between devices are taken as the optimization variables, and the maximum q-factor is chosen as the objective function. The q-factor is a performance assessment parameter that quantifies the average total power produced by an array compared to an individual device. Three array layouts—namely, the single-, double-, and triple-array, each comprising 12 OWSCs—were considered. The pitch response amplitude operator (RAO) of each device in the array was evaluated, from which the power generated and q-factor were determined. The influence of different wave periods and their propagation directions on the array optimal spacing and q-factor was investigated. This study shows that the optimal spacing is highly correlated to the scattering parameter. The results presented here will aid engineers in selecting appropriate spacing that would maximize the power production. The results also provide an enhanced understanding of the performance of the OWSC array when arranged in different configurations.
    • Download: (8.215Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimization of Spacing for Oscillating Wave Surge Converter Arrays Using Genetic Algorithm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244933
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorZhi Yung Tay
    contributor authorVengatesan Venugopal
    date accessioned2017-12-30T13:02:37Z
    date available2017-12-30T13:02:37Z
    date issued2017
    identifier other%28ASCE%29WW.1943-5460.0000368.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244933
    description abstractThe oscillating wave surge converter (OWSC) is a type of ocean wave power device typically consisting of a flap, or arm, hinged at the bottom to allow forward and backward movement by surging waves, and is efficient in generating electricity from waves due to its capability in operating at a wide range of wave spectra. The power generated from the OWSC could be further maximized by arranging the devices in an array at their optimal spacing. This paper addresses the optimization of device configuration within an array by using the genetic algorithm (GA) scheme, for which the spacings between devices are taken as the optimization variables, and the maximum q-factor is chosen as the objective function. The q-factor is a performance assessment parameter that quantifies the average total power produced by an array compared to an individual device. Three array layouts—namely, the single-, double-, and triple-array, each comprising 12 OWSCs—were considered. The pitch response amplitude operator (RAO) of each device in the array was evaluated, from which the power generated and q-factor were determined. The influence of different wave periods and their propagation directions on the array optimal spacing and q-factor was investigated. This study shows that the optimal spacing is highly correlated to the scattering parameter. The results presented here will aid engineers in selecting appropriate spacing that would maximize the power production. The results also provide an enhanced understanding of the performance of the OWSC array when arranged in different configurations.
    publisherAmerican Society of Civil Engineers
    titleOptimization of Spacing for Oscillating Wave Surge Converter Arrays Using Genetic Algorithm
    typeJournal Paper
    journal volume143
    journal issue2
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000368
    page04016019
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2017:;Volume ( 143 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian