YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbulence Statistics of Wave-Current Flow over a Submerged Cube

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2016:;Volume ( 142 ):;issue: 003
    Author:
    Santosh Kumar Singh
    ,
    Koustuv Debnath
    ,
    Bijoy S. Mazumder
    DOI: 10.1061/(ASCE)WW.1943-5460.0000329
    Publisher: American Society of Civil Engineers
    Abstract: This paper describes an experimental study carried out in a laboratory flume to investigate the interaction of a surface wave with a unidirectional current over a submerged cubic obstacle. The three-dimensional velocity field was measured using an acoustic Doppler velocimeter (ADV). The results highlight the changes induced in the mean velocity profile, turbulent intensity, and Reynolds shear stress in a plane of symmetry from the superposition of surface waves of different frequencies. Modifications in the mean velocities, turbulence intensities, and Reynolds shear stresses with respect to the flat surface case, in the vicinity of the cube, are explored. This study also investigates the dominant turbulent bursting event that contributes to the Reynolds shear stress in the near-bed flow influenced by the cube. The results show that near the boundary, the contributions to the total shear stress from ejection and sweep are dominant. However, away from the boundary, the outward and inward interactions illustrate the prominence of wave−current interacting flow over the cube, which differs greatly from the flow over a flat surface. The mean time intervals of the occurrence of bursting events are obtained from the measurements of the fractional contributions to the total shear stress. The distribution of these time intervals is found to change because of the superposition of waves. As the frequency of the surface waves in a unidirectional current changes, the results show variations in the mean flow and the turbulence statistics that affect the local sediment mobility in the flow region influenced by the submerged cube.
    • Download: (4.026Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbulence Statistics of Wave-Current Flow over a Submerged Cube

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244928
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorSantosh Kumar Singh
    contributor authorKoustuv Debnath
    contributor authorBijoy S. Mazumder
    date accessioned2017-12-30T13:02:36Z
    date available2017-12-30T13:02:36Z
    date issued2016
    identifier other%28ASCE%29WW.1943-5460.0000329.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244928
    description abstractThis paper describes an experimental study carried out in a laboratory flume to investigate the interaction of a surface wave with a unidirectional current over a submerged cubic obstacle. The three-dimensional velocity field was measured using an acoustic Doppler velocimeter (ADV). The results highlight the changes induced in the mean velocity profile, turbulent intensity, and Reynolds shear stress in a plane of symmetry from the superposition of surface waves of different frequencies. Modifications in the mean velocities, turbulence intensities, and Reynolds shear stresses with respect to the flat surface case, in the vicinity of the cube, are explored. This study also investigates the dominant turbulent bursting event that contributes to the Reynolds shear stress in the near-bed flow influenced by the cube. The results show that near the boundary, the contributions to the total shear stress from ejection and sweep are dominant. However, away from the boundary, the outward and inward interactions illustrate the prominence of wave−current interacting flow over the cube, which differs greatly from the flow over a flat surface. The mean time intervals of the occurrence of bursting events are obtained from the measurements of the fractional contributions to the total shear stress. The distribution of these time intervals is found to change because of the superposition of waves. As the frequency of the surface waves in a unidirectional current changes, the results show variations in the mean flow and the turbulence statistics that affect the local sediment mobility in the flow region influenced by the submerged cube.
    publisherAmerican Society of Civil Engineers
    titleTurbulence Statistics of Wave-Current Flow over a Submerged Cube
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000329
    page04015027
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2016:;Volume ( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian