YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flood Risk Assessment in Urban Catchments Using Multiple Regression Analysis

    Source: Journal of Water Resources Planning and Management:;2018:;Volume ( 144 ):;issue: 002
    Author:
    Daniel Jato-Espino
    ,
    Nora Sillanpää
    ,
    Ignacio Andrés-Doménech
    ,
    Jorge Rodriguez-Hernandez
    DOI: 10.1061/(ASCE)WR.1943-5452.0000874
    Publisher: American Society of Civil Engineers
    Abstract: Flood assessment in urban catchments is usually addressed through the combination of geographic information systems (GISs) and stormwater models. However, the coupled use of these tools involves a level of detail in terms of hydrological modeling that can be beyond the scope of overall flood management planning strategies. This research consists of the development of a methodology based on multiple regression analysis (MRA) to assess flood risk in urban catchments according to their morphologic characteristics and the geometrical and topological arrangement of the drainage networks into which they flow. Stormwater models were replaced by a combination of multiple linear regression (MLR), multiple nonlinear regression (MNLR), and multiple binary logistic regression (MBLR), which enabled identifying influential parameters in the maximum runoff rates generated in urban catchments, modeling the magnitude of peak flows across them, and estimating flood risk in the nodes of sewer networks, respectively. The results obtained through a real urban catchment located in Espoo, Finland, demonstrated the usefulness of the proposed methodology to provide an accurate replication of flood occurrence in urban catchments due to intense storm events favored by climate change, information that can be used to plan and design preventative drainage strategies.
    • Download: (1.437Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flood Risk Assessment in Urban Catchments Using Multiple Regression Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244919
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorDaniel Jato-Espino
    contributor authorNora Sillanpää
    contributor authorIgnacio Andrés-Doménech
    contributor authorJorge Rodriguez-Hernandez
    date accessioned2017-12-30T13:02:33Z
    date available2017-12-30T13:02:33Z
    date issued2018
    identifier other%28ASCE%29WR.1943-5452.0000874.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244919
    description abstractFlood assessment in urban catchments is usually addressed through the combination of geographic information systems (GISs) and stormwater models. However, the coupled use of these tools involves a level of detail in terms of hydrological modeling that can be beyond the scope of overall flood management planning strategies. This research consists of the development of a methodology based on multiple regression analysis (MRA) to assess flood risk in urban catchments according to their morphologic characteristics and the geometrical and topological arrangement of the drainage networks into which they flow. Stormwater models were replaced by a combination of multiple linear regression (MLR), multiple nonlinear regression (MNLR), and multiple binary logistic regression (MBLR), which enabled identifying influential parameters in the maximum runoff rates generated in urban catchments, modeling the magnitude of peak flows across them, and estimating flood risk in the nodes of sewer networks, respectively. The results obtained through a real urban catchment located in Espoo, Finland, demonstrated the usefulness of the proposed methodology to provide an accurate replication of flood occurrence in urban catchments due to intense storm events favored by climate change, information that can be used to plan and design preventative drainage strategies.
    publisherAmerican Society of Civil Engineers
    titleFlood Risk Assessment in Urban Catchments Using Multiple Regression Analysis
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0000874
    page04017085
    treeJournal of Water Resources Planning and Management:;2018:;Volume ( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian