YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Economic Analysis of Pressure Control for Leakage and Pipe Burst Reduction

    Source: Journal of Water Resources Planning and Management:;2017:;Volume ( 143 ):;issue: 012
    Author:
    Enrico Creaco
    ,
    Thomas Walski
    DOI: 10.1061/(ASCE)WR.1943-5452.0000846
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents an economic analysis of pressure control solutions for leakage and pipe burst reduction. In detail, it explores the operating conditions under which the installation of conventional mechanical pressure reducing valves (PRVs) or remotely real-time controlled (RTC) valves are cost effective compared to a scenario with no control. For a range of system sizes, hydraulic extended period simulations and empirical formulas were used to estimate leakage rates and pipe bursts, respectively, in numerous operational scenarios, including different precontrol leakage levels and demand patterns, the absence of pressure control, and the installation of a PRV or RTC valve. The total cost of the controlled system, including the installation cost of the control device, the flow-dependent operation and maintenance (O&M) cost, and the pipe burst repair cost over the planning horizon, was compared with the water-related O&M and pipe burst repair costs of the uncontrolled system. The results pointed out that no pressure controls are needed if leakage and the variable O&M cost of water are low. When these variables are high, remote RTC is attractive, especially when the demand pattern is peaked and the system is large. For more moderate cost and leakage, a conventional PRV may be better than RTC, especially in small systems and for relatively smooth demand patterns.
    • Download: (1.154Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Economic Analysis of Pressure Control for Leakage and Pipe Burst Reduction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244901
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorEnrico Creaco
    contributor authorThomas Walski
    date accessioned2017-12-30T13:02:29Z
    date available2017-12-30T13:02:29Z
    date issued2017
    identifier other%28ASCE%29WR.1943-5452.0000846.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244901
    description abstractThis paper presents an economic analysis of pressure control solutions for leakage and pipe burst reduction. In detail, it explores the operating conditions under which the installation of conventional mechanical pressure reducing valves (PRVs) or remotely real-time controlled (RTC) valves are cost effective compared to a scenario with no control. For a range of system sizes, hydraulic extended period simulations and empirical formulas were used to estimate leakage rates and pipe bursts, respectively, in numerous operational scenarios, including different precontrol leakage levels and demand patterns, the absence of pressure control, and the installation of a PRV or RTC valve. The total cost of the controlled system, including the installation cost of the control device, the flow-dependent operation and maintenance (O&M) cost, and the pipe burst repair cost over the planning horizon, was compared with the water-related O&M and pipe burst repair costs of the uncontrolled system. The results pointed out that no pressure controls are needed if leakage and the variable O&M cost of water are low. When these variables are high, remote RTC is attractive, especially when the demand pattern is peaked and the system is large. For more moderate cost and leakage, a conventional PRV may be better than RTC, especially in small systems and for relatively smooth demand patterns.
    publisherAmerican Society of Civil Engineers
    titleEconomic Analysis of Pressure Control for Leakage and Pipe Burst Reduction
    typeJournal Paper
    journal volume143
    journal issue12
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0000846
    page04017074
    treeJournal of Water Resources Planning and Management:;2017:;Volume ( 143 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian