YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Torsional Effect on Track-Support Structures of Railway Turnouts Crossing Impact

    Source: Journal of Transportation Engineering, Part A: Systems:;2017:;Volume ( 143 ):;issue: 002
    Author:
    James Sae Siew
    ,
    Olivia Mirza
    ,
    Sakdirat Kaewunruen
    DOI: 10.1061/JTEPBS.0000004
    Publisher: American Society of Civil Engineers
    Abstract: The introduction of special crossings and rail turnouts provides flexibility in the rail network as it allows for vehicles to switch between various tracks, thereby maximizing the utilization of current infrastructure. Turnouts are a costly and critical feature to a rail system as they suffer adverse operational loads, compared with a straight rail track, and thus require regular maintenance. This leads to the question of whether a turnout can be justified for flexibility against upkeep costs throughout the life of the turnout. Therefore, great consideration is given to the interaction between the turnout components and reducing wear in service, as failed components may have adverse effects on the performance of neighboring components. This paper presents a development of three-dimensional (3D) finite-element (FE) model, fostering nonlinearities in materials’ behaviors, to analyze the forces and reactions in a railway turnout system. The analysis provides new findings of critical sections in the turnout and further enables alterations to be made to the initial design of members to accommodate for the increased effects. The FE model is composed of standard concrete sleepers with 60-kg/m rail and a tangential turnout radius of 250 m. The turnout structure is supported by a ballast layer, which is represented by a deformable solid. The FE model is the first in the world to predict the torsional behavior of the turnout and its fragile support by considering multiwheel impacts, which would simulate in-service and cyclic loading and will be adapted as a set of concentrated loads to represent a coupled locomotive negotiating the turnout. The simulations demonstrate the significance of the third medium to suppress the torsional effect of the crossing forces on supporting bearers.
    • Download: (2.293Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Torsional Effect on Track-Support Structures of Railway Turnouts Crossing Impact

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244712
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorJames Sae Siew
    contributor authorOlivia Mirza
    contributor authorSakdirat Kaewunruen
    date accessioned2017-12-30T13:01:41Z
    date available2017-12-30T13:01:41Z
    date issued2017
    identifier otherJTEPBS.0000004.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244712
    description abstractThe introduction of special crossings and rail turnouts provides flexibility in the rail network as it allows for vehicles to switch between various tracks, thereby maximizing the utilization of current infrastructure. Turnouts are a costly and critical feature to a rail system as they suffer adverse operational loads, compared with a straight rail track, and thus require regular maintenance. This leads to the question of whether a turnout can be justified for flexibility against upkeep costs throughout the life of the turnout. Therefore, great consideration is given to the interaction between the turnout components and reducing wear in service, as failed components may have adverse effects on the performance of neighboring components. This paper presents a development of three-dimensional (3D) finite-element (FE) model, fostering nonlinearities in materials’ behaviors, to analyze the forces and reactions in a railway turnout system. The analysis provides new findings of critical sections in the turnout and further enables alterations to be made to the initial design of members to accommodate for the increased effects. The FE model is composed of standard concrete sleepers with 60-kg/m rail and a tangential turnout radius of 250 m. The turnout structure is supported by a ballast layer, which is represented by a deformable solid. The FE model is the first in the world to predict the torsional behavior of the turnout and its fragile support by considering multiwheel impacts, which would simulate in-service and cyclic loading and will be adapted as a set of concentrated loads to represent a coupled locomotive negotiating the turnout. The simulations demonstrate the significance of the third medium to suppress the torsional effect of the crossing forces on supporting bearers.
    publisherAmerican Society of Civil Engineers
    titleTorsional Effect on Track-Support Structures of Railway Turnouts Crossing Impact
    typeJournal Paper
    journal volume143
    journal issue2
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000004
    page06016001
    treeJournal of Transportation Engineering, Part A: Systems:;2017:;Volume ( 143 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian