YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tests and Simple Models of RC Frame Subassemblies for Postulated Loss of Column

    Source: Journal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 002
    Author:
    N. Stathas
    ,
    S. N. Bousias
    ,
    X. Palios
    ,
    E. Strepelias
    ,
    M. N. Fardis
    DOI: 10.1061/(ASCE)ST.1943-541X.0001951
    Publisher: American Society of Civil Engineers
    Abstract: The impact of the loss of an intermediate column on the most adversely affected subassembly of a multistory, multibay reinforced concrete (RC) frame was studied experimentally and analytically. Two subassemblies were considered: a monolithic one and another consisting of dry-jointed precast beams and columns, held together with the help of concentric unbonded prestressing of the beams. A uniformly distributed load was applied along the beams to realistically simulate the loading in a building with about the same geometry and loads in all floors above the failed column. The load-deflection response can be followed with a simple hand-calculation model, which takes into account the primary geometric and material nonlinearities, including arch action in the web of the beam and catenary action in the rebars and unbonded tendons. The model quantifies the difference between single-point loading of the beam, as is normally the case in other experimental campaigns, and distributed loading, as well as the contributions of the various resistance mechanisms and sensitivity to parameters. An interesting experimental finding is that a beam—even a monolithic one—does not behave as a well-integrated system of steel and concrete when it loses a column: the longitudinal reinforcement transfers the catenary tension to the beams of the adjacent bays, pulling the columns together, whereas compression from the arch action is transferred to the columns, pushing them apart. The test results are combined with those of one-way continuous slabs for simulated loss of support to an exterior beam to quantify the margins when support to a column is lost.
    • Download: (2.251Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tests and Simple Models of RC Frame Subassemblies for Postulated Loss of Column

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244612
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorN. Stathas
    contributor authorS. N. Bousias
    contributor authorX. Palios
    contributor authorE. Strepelias
    contributor authorM. N. Fardis
    date accessioned2017-12-30T13:01:17Z
    date available2017-12-30T13:01:17Z
    date issued2018
    identifier other%28ASCE%29ST.1943-541X.0001951.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244612
    description abstractThe impact of the loss of an intermediate column on the most adversely affected subassembly of a multistory, multibay reinforced concrete (RC) frame was studied experimentally and analytically. Two subassemblies were considered: a monolithic one and another consisting of dry-jointed precast beams and columns, held together with the help of concentric unbonded prestressing of the beams. A uniformly distributed load was applied along the beams to realistically simulate the loading in a building with about the same geometry and loads in all floors above the failed column. The load-deflection response can be followed with a simple hand-calculation model, which takes into account the primary geometric and material nonlinearities, including arch action in the web of the beam and catenary action in the rebars and unbonded tendons. The model quantifies the difference between single-point loading of the beam, as is normally the case in other experimental campaigns, and distributed loading, as well as the contributions of the various resistance mechanisms and sensitivity to parameters. An interesting experimental finding is that a beam—even a monolithic one—does not behave as a well-integrated system of steel and concrete when it loses a column: the longitudinal reinforcement transfers the catenary tension to the beams of the adjacent bays, pulling the columns together, whereas compression from the arch action is transferred to the columns, pushing them apart. The test results are combined with those of one-way continuous slabs for simulated loss of support to an exterior beam to quantify the margins when support to a column is lost.
    publisherAmerican Society of Civil Engineers
    titleTests and Simple Models of RC Frame Subassemblies for Postulated Loss of Column
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001951
    page04017195
    treeJournal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian