YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reinforced Masonry Building Seismic Response Models for ASCE/SEI-41

    Source: Journal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 001
    Author:
    Mohamed Ezzeldin
    ,
    Wael El-Dakhakhni
    ,
    Lydell Wiebe
    DOI: 10.1061/(ASCE)ST.1943-541X.0001914
    Publisher: American Society of Civil Engineers
    Abstract: The development of models to predict the inelastic behavior of the individual components of a building system at different performance levels is an essential step in performing nonlinear static and dynamic analyses, as recommended by ASCE/SEI-41. However, current methodologies for generating nonlinear models for reinforced masonry shear wall (RMSW) buildings do not adequately account for various system-level aspects, such as the influence of the floor slab stiffness. Several recent studies have shown that these aspects would significantly alter the overall building response under seismic loading. In addition, although ASCE/SEI-41 defines the capacity parameters of reinforced masonry shear walls (RMSWs) with rectangular cross sections through standardized force-displacement backbone relationships, no corresponding relationships are available for RMSWs with boundary elements. Moreover, ASCE/SEI-41 does not provide the necessary hysteretic parameters required to define the cyclic behavior of any type of RMSWs under seismic loading. To address these issues, this study focuses on developing two ASCE/SEI-41 relevant models for RMSW buildings, based on the currently available provisions pertaining to their reinforced concrete (RC) counterparts. The first model is a backbone model for RMSW buildings without and with boundary elements that can be used to perform nonlinear static analyses. The experimentally validated modeling approach shows that RC parameters are applicable, but it is critical to include the out-of-plane stiffness of the floor diaphragms when evaluating the overall building response. The second model is a concentrated plasticity (spring) model in OpenSees used to simulate the hysteretic response of RMSW buildings with different configurations, to conduct nonlinear dynamic analyses. Finally, the developed numerical hysteretic responses are compared with experimental results in terms of the most relevant characteristics, including the initial stiffness, peak load, and stiffness and strength degradation as applicable. This study aims at presenting useful system-level response prediction tools for the nonlinear static and dynamic procedures specified by ASCE/SEI-41.
    • Download: (3.298Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reinforced Masonry Building Seismic Response Models for ASCE/SEI-41

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244588
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMohamed Ezzeldin
    contributor authorWael El-Dakhakhni
    contributor authorLydell Wiebe
    date accessioned2017-12-30T13:01:11Z
    date available2017-12-30T13:01:11Z
    date issued2018
    identifier other%28ASCE%29ST.1943-541X.0001914.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244588
    description abstractThe development of models to predict the inelastic behavior of the individual components of a building system at different performance levels is an essential step in performing nonlinear static and dynamic analyses, as recommended by ASCE/SEI-41. However, current methodologies for generating nonlinear models for reinforced masonry shear wall (RMSW) buildings do not adequately account for various system-level aspects, such as the influence of the floor slab stiffness. Several recent studies have shown that these aspects would significantly alter the overall building response under seismic loading. In addition, although ASCE/SEI-41 defines the capacity parameters of reinforced masonry shear walls (RMSWs) with rectangular cross sections through standardized force-displacement backbone relationships, no corresponding relationships are available for RMSWs with boundary elements. Moreover, ASCE/SEI-41 does not provide the necessary hysteretic parameters required to define the cyclic behavior of any type of RMSWs under seismic loading. To address these issues, this study focuses on developing two ASCE/SEI-41 relevant models for RMSW buildings, based on the currently available provisions pertaining to their reinforced concrete (RC) counterparts. The first model is a backbone model for RMSW buildings without and with boundary elements that can be used to perform nonlinear static analyses. The experimentally validated modeling approach shows that RC parameters are applicable, but it is critical to include the out-of-plane stiffness of the floor diaphragms when evaluating the overall building response. The second model is a concentrated plasticity (spring) model in OpenSees used to simulate the hysteretic response of RMSW buildings with different configurations, to conduct nonlinear dynamic analyses. Finally, the developed numerical hysteretic responses are compared with experimental results in terms of the most relevant characteristics, including the initial stiffness, peak load, and stiffness and strength degradation as applicable. This study aims at presenting useful system-level response prediction tools for the nonlinear static and dynamic procedures specified by ASCE/SEI-41.
    publisherAmerican Society of Civil Engineers
    titleReinforced Masonry Building Seismic Response Models for ASCE/SEI-41
    typeJournal Paper
    journal volume144
    journal issue1
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001914
    page04017175
    treeJournal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian