YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hysteretic Model for Exposed Column–Base Connections

    Source: Journal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 012
    Author:
    Pablo Torres Rodas
    ,
    Farzin Zareian
    ,
    Amit Kanvinde
    DOI: 10.1061/(ASCE)ST.1943-541X.0001602
    Publisher: American Society of Civil Engineers
    Abstract: A hysteretic model formulation is presented for simulation of the cyclic moment-rotation response of exposed column–base (ECB) connections, which are typically used to connect a steel column to a concrete footing in steel moment-resisting frames. The research is motivated by the potential for using these connections as dissipative elements within seismic design. The physical processes responsible for various forms of hysteretic response are outlined; these include: (1) seating and gapping between the base plate and footing leading to pinched hysteresis, and (2) a recentering effect of axial compressive load resulting in flag-shaped hysteresis. The proposed ECB model utilizes: (1) a trilinear backbone curve; (2) hysteretic rules for pinching, unloading, recentering, and reloading; and (3) modes of deterioration for four quantities, including strength and stiffness. The model has 16 parameters, of which 4 are classified as core parameters (meaning they can be determined through physics-based models), whereas 12 are classified as ancillary, such that they require empirical calibration. The model is fit to a series of experiments, and it is determined that it is able to simulate the key aspects of hysteretic response. Recommendations for calibration of model parameters are presented, and limitations of the model are outlined.
    • Download: (7.432Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hysteretic Model for Exposed Column–Base Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244548
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorPablo Torres Rodas
    contributor authorFarzin Zareian
    contributor authorAmit Kanvinde
    date accessioned2017-12-30T13:01:02Z
    date available2017-12-30T13:01:02Z
    date issued2016
    identifier other%28ASCE%29ST.1943-541X.0001602.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244548
    description abstractA hysteretic model formulation is presented for simulation of the cyclic moment-rotation response of exposed column–base (ECB) connections, which are typically used to connect a steel column to a concrete footing in steel moment-resisting frames. The research is motivated by the potential for using these connections as dissipative elements within seismic design. The physical processes responsible for various forms of hysteretic response are outlined; these include: (1) seating and gapping between the base plate and footing leading to pinched hysteresis, and (2) a recentering effect of axial compressive load resulting in flag-shaped hysteresis. The proposed ECB model utilizes: (1) a trilinear backbone curve; (2) hysteretic rules for pinching, unloading, recentering, and reloading; and (3) modes of deterioration for four quantities, including strength and stiffness. The model has 16 parameters, of which 4 are classified as core parameters (meaning they can be determined through physics-based models), whereas 12 are classified as ancillary, such that they require empirical calibration. The model is fit to a series of experiments, and it is determined that it is able to simulate the key aspects of hysteretic response. Recommendations for calibration of model parameters are presented, and limitations of the model are outlined.
    publisherAmerican Society of Civil Engineers
    titleHysteretic Model for Exposed Column–Base Connections
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001602
    page04016137
    treeJournal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian