YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of In-Plane Cyclic Response of Unbonded Posttensioned Masonry Walls

    Source: Journal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 005
    Author:
    Reza Hassanli
    ,
    Mohamed A. ElGawady
    ,
    Julie E. Mills
    DOI: 10.1061/(ASCE)ST.1943-541X.0001450
    Publisher: American Society of Civil Engineers
    Abstract: This paper reports on an experimental study on four unbonded posttensioned masonry walls (PT-MWs). All walls had identical thickness, height, and length of 190, 2,000, and 1,400 mm, respectively, and were constructed using concrete masonry units (CMUs) and mortar type N, and were fully grouted. Different horizontal spacing values of 400, 600, and 1,200 mm were used between the posttensioning bars in the walls. Only Wall W4 had horizontal bonded reinforcement, located in the fourth and seventh courses. Two different levels of posttensioning force corresponding to an average posttensioning compressive axial stress on the masonry of 1.35 and 2.7 MPa were applied to the walls. Different initial posttension stresses in the bars ranging from 0.32 to 0.63 of the yield stress of each bar were applied to the walls. The walls were subjected to incrementally increasing in-plane lateral displacement cyclic load applied to the top of each wall. The experimental results including damage pattern, force displacement response, residual drift ratio, masonry compressive strain, wall rotation, damping, stiffness, stiffness degradation, and displacement ductility of the tested walls are presented and discussed in detail. The accuracy of ignoring the elongation of post-tensioning bars in predicting the strength of the tested walls is investigated based on the experimental results. The experimental tests showed that PT-MWs having the same total initial PT force but different stress levels in the PT bars displayed different lateral strengths. Doubling the total initial PT forces in the bars resulted in insignificant increases in the wall lateral strength. Finally, using bonded horizontal steel improved the lateral displacement capacity of the test specimen. Specimens that had horizontal reinforcement did not suffer postpeak shear cracking and hence were able to reach higher level of lateral displacement.
    • Download: (31.61Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of In-Plane Cyclic Response of Unbonded Posttensioned Masonry Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244483
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorReza Hassanli
    contributor authorMohamed A. ElGawady
    contributor authorJulie E. Mills
    date accessioned2017-12-30T13:00:43Z
    date available2017-12-30T13:00:43Z
    date issued2016
    identifier other%28ASCE%29ST.1943-541X.0001450.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244483
    description abstractThis paper reports on an experimental study on four unbonded posttensioned masonry walls (PT-MWs). All walls had identical thickness, height, and length of 190, 2,000, and 1,400 mm, respectively, and were constructed using concrete masonry units (CMUs) and mortar type N, and were fully grouted. Different horizontal spacing values of 400, 600, and 1,200 mm were used between the posttensioning bars in the walls. Only Wall W4 had horizontal bonded reinforcement, located in the fourth and seventh courses. Two different levels of posttensioning force corresponding to an average posttensioning compressive axial stress on the masonry of 1.35 and 2.7 MPa were applied to the walls. Different initial posttension stresses in the bars ranging from 0.32 to 0.63 of the yield stress of each bar were applied to the walls. The walls were subjected to incrementally increasing in-plane lateral displacement cyclic load applied to the top of each wall. The experimental results including damage pattern, force displacement response, residual drift ratio, masonry compressive strain, wall rotation, damping, stiffness, stiffness degradation, and displacement ductility of the tested walls are presented and discussed in detail. The accuracy of ignoring the elongation of post-tensioning bars in predicting the strength of the tested walls is investigated based on the experimental results. The experimental tests showed that PT-MWs having the same total initial PT force but different stress levels in the PT bars displayed different lateral strengths. Doubling the total initial PT forces in the bars resulted in insignificant increases in the wall lateral strength. Finally, using bonded horizontal steel improved the lateral displacement capacity of the test specimen. Specimens that had horizontal reinforcement did not suffer postpeak shear cracking and hence were able to reach higher level of lateral displacement.
    publisherAmerican Society of Civil Engineers
    titleExperimental Investigation of In-Plane Cyclic Response of Unbonded Posttensioned Masonry Walls
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001450
    page04015171
    treeJournal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian