YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Seismic and Progressive Collapse Designs on the Vulnerability of RC Frame Structures

    Source: Journal of Performance of Constructed Facilities:;2017:;Volume ( 031 ):;issue: 001
    Author:
    Kaiqi Lin
    ,
    Yi Li
    ,
    Xinzheng Lu
    ,
    Hong Guan
    DOI: 10.1061/(ASCE)CF.1943-5509.0000942
    Publisher: American Society of Civil Engineers
    Abstract: Buildings are exposed to multiple natural hazards over their service lives. Multihazard analysis and design of building structures has become a research hotspot worldwide. For these structures, earthquake and progressive collapse are two of the most commonly encountered hazards. However, little research has been conducted to examine the effects of the seismic and progressive collapse designs on the resistance of buildings against multiple hazards. In this study, a series of six-story reinforced concrete (RC) frames are considered, and their seismic and progressive collapse designs are performed independently according to the corresponding design codes. Fragility curves are used to assess the seismic and progressive collapse resistance. The interactions between the two designs are discussed by analyzing the fragility curves and the collapse modes. Results show that the progressive collapse design of the RC frame may lead to an undesirable failure mode (i.e., strong-beam-weak-column) under earthquakes, which indicates that a seismic redesign is necessary subsequent to the progressive collapse design. Note that sequential use of different design codes for a structure may result in material waste yet a suboptimal structural performance. Therefore, a design method by individually considering different hazards is unsuitable for the multihazard prevention and mitigation of building structures. A comprehensive and integrated design method for multihazards is thus in great need. The outcome of this study will lay a foundation for future multihazard analysis and design of building structures.
    • Download: (3.672Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Seismic and Progressive Collapse Designs on the Vulnerability of RC Frame Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244196
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorKaiqi Lin
    contributor authorYi Li
    contributor authorXinzheng Lu
    contributor authorHong Guan
    date accessioned2017-12-30T12:59:18Z
    date available2017-12-30T12:59:18Z
    date issued2017
    identifier other%28ASCE%29CF.1943-5509.0000942.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244196
    description abstractBuildings are exposed to multiple natural hazards over their service lives. Multihazard analysis and design of building structures has become a research hotspot worldwide. For these structures, earthquake and progressive collapse are two of the most commonly encountered hazards. However, little research has been conducted to examine the effects of the seismic and progressive collapse designs on the resistance of buildings against multiple hazards. In this study, a series of six-story reinforced concrete (RC) frames are considered, and their seismic and progressive collapse designs are performed independently according to the corresponding design codes. Fragility curves are used to assess the seismic and progressive collapse resistance. The interactions between the two designs are discussed by analyzing the fragility curves and the collapse modes. Results show that the progressive collapse design of the RC frame may lead to an undesirable failure mode (i.e., strong-beam-weak-column) under earthquakes, which indicates that a seismic redesign is necessary subsequent to the progressive collapse design. Note that sequential use of different design codes for a structure may result in material waste yet a suboptimal structural performance. Therefore, a design method by individually considering different hazards is unsuitable for the multihazard prevention and mitigation of building structures. A comprehensive and integrated design method for multihazards is thus in great need. The outcome of this study will lay a foundation for future multihazard analysis and design of building structures.
    publisherAmerican Society of Civil Engineers
    titleEffects of Seismic and Progressive Collapse Designs on the Vulnerability of RC Frame Structures
    typeJournal Paper
    journal volume31
    journal issue1
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0000942
    page04016079
    treeJournal of Performance of Constructed Facilities:;2017:;Volume ( 031 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian