YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characterization of the Distress Modes and In Situ Material Properties of Highway Asphalt Pavement with Long Service Life

    Source: Journal of Performance of Constructed Facilities:;2016:;Volume ( 030 ):;issue: 004
    Author:
    Yuhong Wang
    ,
    Alvin S. T. Wong
    ,
    Yong Wen
    ,
    Ling Chen
    ,
    Dan Chong
    ,
    Hainian Wang
    DOI: 10.1061/(ASCE)CF.1943-5509.0000836
    Publisher: American Society of Civil Engineers
    Abstract: A 36-year-old, heavily trafficked highway asphalt pavement was analyzed in detail. The variation in structural capacity was assessed by a falling-weight deflectometer (FWD). Trenches were cut to examine the distresses in the pavement structure. Sample cores were taken for the study of distress modes, volumetric characteristics, and mechanical properties of the asphalt mixtures. Asphalt binder was extracted from the cores for the study of rheological properties. Rutting, cracking, fracture at the pavement bottom, and debonding at the interfaces were found to be the major distress modes. Air voids (AVs) were found to vary greatly in the samples and to be particularly high at the construction joints and at the pavement bottom. The total AV contents are primarily attributed to a few large voids, not a large number of seemingly disconnected voids. The stiffness of the road samples was much higher than that of the new mixture of the same type, and the average stiffness of the samples from the wheel path is lower than that of the samples from the nonwheel path. The increased stiffness by aging apparently reduces the sensitivity of the samples to stress change in fatigue tests. All binders in the different layers of the pavement were found to be severely aged, and pavement depth and mixture type significantly affect aging rate. Possible reasons for the durability of the pavement and pitfalls that may need to be avoided are discussed. The findings are important for the development of long-life flexible pavements.
    • Download: (12.63Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characterization of the Distress Modes and In Situ Material Properties of Highway Asphalt Pavement with Long Service Life

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244142
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorYuhong Wang
    contributor authorAlvin S. T. Wong
    contributor authorYong Wen
    contributor authorLing Chen
    contributor authorDan Chong
    contributor authorHainian Wang
    date accessioned2017-12-30T12:58:55Z
    date available2017-12-30T12:58:55Z
    date issued2016
    identifier other%28ASCE%29CF.1943-5509.0000836.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244142
    description abstractA 36-year-old, heavily trafficked highway asphalt pavement was analyzed in detail. The variation in structural capacity was assessed by a falling-weight deflectometer (FWD). Trenches were cut to examine the distresses in the pavement structure. Sample cores were taken for the study of distress modes, volumetric characteristics, and mechanical properties of the asphalt mixtures. Asphalt binder was extracted from the cores for the study of rheological properties. Rutting, cracking, fracture at the pavement bottom, and debonding at the interfaces were found to be the major distress modes. Air voids (AVs) were found to vary greatly in the samples and to be particularly high at the construction joints and at the pavement bottom. The total AV contents are primarily attributed to a few large voids, not a large number of seemingly disconnected voids. The stiffness of the road samples was much higher than that of the new mixture of the same type, and the average stiffness of the samples from the wheel path is lower than that of the samples from the nonwheel path. The increased stiffness by aging apparently reduces the sensitivity of the samples to stress change in fatigue tests. All binders in the different layers of the pavement were found to be severely aged, and pavement depth and mixture type significantly affect aging rate. Possible reasons for the durability of the pavement and pitfalls that may need to be avoided are discussed. The findings are important for the development of long-life flexible pavements.
    publisherAmerican Society of Civil Engineers
    titleCharacterization of the Distress Modes and In Situ Material Properties of Highway Asphalt Pavement with Long Service Life
    typeJournal Paper
    journal volume30
    journal issue4
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0000836
    page04015095
    treeJournal of Performance of Constructed Facilities:;2016:;Volume ( 030 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian