YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Nanomechanics and Micromechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Nanomechanics and Micromechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing

    Source: Journal of Nanomechanics and Micromechanics:;2016:;Volume ( 006 ):;issue: 002
    Author:
    Ange-Therese Akono
    DOI: 10.1061/(ASCE)NM.2153-5477.0000105
    Abstract: A scratch test consists in pulling a diamond stylus across the surface of a weaker material; it is widely applied in several fields of science and engineering, including polymer damage, metal wear, thin-film quality control, and strength of rocks. Recently, there has been an upsurge of interest in the fracture analysis of materials via scratch testing. In this study, the energetic size effect law (SEL) is applied at the microscopic scale for progressive-load scratch tests using a Rockwell C diamond probe. First, we employ dimensional analysis to connect the scratch force to the projected load-bearing area and to the perimeter for an axisymmetric scratch probe. In a second step, based on geometrical considerations, we approximate the real scratch probe geometry with a cone of equivalent half-apex angle, θeq. Then, we express the dependence of the nominal strength, σN, on the structural size, Λ, via a scaling relationship. The theoretical developments are later implemented in an experimental procedure so as to assess the solid fracture toughness and characteristic length directly from micro-scratch test measurements. The microscopic SEL is first tested on homogeneous materials, such as paraffin wax, polycarbonate, polyacetal, and aluminum. An excellent agreement is found between the theoretical predictions and measurements from conventional fracture testing methods, such as three-point bending tests on single-edge notched specimens. The theoretico-experimental framework is then extended to an extensive characterization campaign including conventional portland cement paste, natural shale, and organic-rich shale. For more than 10 different materials, the nominal strength exhibits a distinct scaling in 1/1+Λ/Λ0, as predicted by the SEL.
    • Download: (4.719Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244085
    Collections
    • Journal of Nanomechanics and Micromechanics

    Show full item record

    contributor authorAnge-Therese Akono
    date accessioned2017-12-30T12:58:31Z
    date available2017-12-30T12:58:31Z
    date issued2016
    identifier other%28ASCE%29NM.2153-5477.0000105.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244085
    description abstractA scratch test consists in pulling a diamond stylus across the surface of a weaker material; it is widely applied in several fields of science and engineering, including polymer damage, metal wear, thin-film quality control, and strength of rocks. Recently, there has been an upsurge of interest in the fracture analysis of materials via scratch testing. In this study, the energetic size effect law (SEL) is applied at the microscopic scale for progressive-load scratch tests using a Rockwell C diamond probe. First, we employ dimensional analysis to connect the scratch force to the projected load-bearing area and to the perimeter for an axisymmetric scratch probe. In a second step, based on geometrical considerations, we approximate the real scratch probe geometry with a cone of equivalent half-apex angle, θeq. Then, we express the dependence of the nominal strength, σN, on the structural size, Λ, via a scaling relationship. The theoretical developments are later implemented in an experimental procedure so as to assess the solid fracture toughness and characteristic length directly from micro-scratch test measurements. The microscopic SEL is first tested on homogeneous materials, such as paraffin wax, polycarbonate, polyacetal, and aluminum. An excellent agreement is found between the theoretical predictions and measurements from conventional fracture testing methods, such as three-point bending tests on single-edge notched specimens. The theoretico-experimental framework is then extended to an extensive characterization campaign including conventional portland cement paste, natural shale, and organic-rich shale. For more than 10 different materials, the nominal strength exhibits a distinct scaling in 1/1+Λ/Λ0, as predicted by the SEL.
    titleEnergetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleJournal of Nanomechanics and Micromechanics
    identifier doi10.1061/(ASCE)NM.2153-5477.0000105
    page04016001
    treeJournal of Nanomechanics and Micromechanics:;2016:;Volume ( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian