YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    FRP-Needles as Discrete Reinforcement in Concrete

    Source: Journal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 010
    Author:
    Ardavan Yazdanbakhsh
    ,
    Lawrence C. Bank
    ,
    Chen Chen
    ,
    Yuan Tian
    DOI: 10.1061/(ASCE)MT.1943-5533.0002033
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a new type of discrete reinforcing element for concrete produced from either waste or new pultruded fiber-reinforced polymer (FRP) composite materials. These elements, referred to as FRP-Needles, are rigid, long, and low in aspect ratio, and have distinct physical and mechanical differences from macrofibers used in concrete. The FRP-Needles used in this study were produced by cutting FRP reinforcing bar (rebar) production scrap with nominal diameter of 6 mm into rod-shape elements with length of 100 mm (aspect ratio of 17). FRP-Needles were incorporated in concrete to replace 5 and 10% of coarse natural aggregate (NA) by volume. The needles did not reduce the workability or stability of concrete. The dispersion and orientation of FRP-Needles in concrete were relatively uniform. The 5 and 10% replacement of NA with FRP-Needles increased the splitting tensile strength of concrete by 22 and 33%, respectively, while reducing the compressive strength by only 5 and 9%. The incorporation of FRP-Needles in concrete resulted in significant increases in postfailure toughness of concrete in both compression and tension. In a parallel study, FRP recycled aggregate (FRP-RA) was produced by cutting scrap rebars into cylindrical pieces with aspect ratio of 1. FRP-RA was incorporated in concrete with the aforementioned dosages to observe the effect of geometrical characteristics of FRP elements on the studied mechanical properties of concrete. The improvements achieved by using FRP-Needles were not observed when FRP-RA was incorporated in concrete.
    • Download: (1.803Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      FRP-Needles as Discrete Reinforcement in Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4244045
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorArdavan Yazdanbakhsh
    contributor authorLawrence C. Bank
    contributor authorChen Chen
    contributor authorYuan Tian
    date accessioned2017-12-30T12:58:23Z
    date available2017-12-30T12:58:23Z
    date issued2017
    identifier other%28ASCE%29MT.1943-5533.0002033.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4244045
    description abstractThis paper presents a new type of discrete reinforcing element for concrete produced from either waste or new pultruded fiber-reinforced polymer (FRP) composite materials. These elements, referred to as FRP-Needles, are rigid, long, and low in aspect ratio, and have distinct physical and mechanical differences from macrofibers used in concrete. The FRP-Needles used in this study were produced by cutting FRP reinforcing bar (rebar) production scrap with nominal diameter of 6 mm into rod-shape elements with length of 100 mm (aspect ratio of 17). FRP-Needles were incorporated in concrete to replace 5 and 10% of coarse natural aggregate (NA) by volume. The needles did not reduce the workability or stability of concrete. The dispersion and orientation of FRP-Needles in concrete were relatively uniform. The 5 and 10% replacement of NA with FRP-Needles increased the splitting tensile strength of concrete by 22 and 33%, respectively, while reducing the compressive strength by only 5 and 9%. The incorporation of FRP-Needles in concrete resulted in significant increases in postfailure toughness of concrete in both compression and tension. In a parallel study, FRP recycled aggregate (FRP-RA) was produced by cutting scrap rebars into cylindrical pieces with aspect ratio of 1. FRP-RA was incorporated in concrete with the aforementioned dosages to observe the effect of geometrical characteristics of FRP elements on the studied mechanical properties of concrete. The improvements achieved by using FRP-Needles were not observed when FRP-RA was incorporated in concrete.
    publisherAmerican Society of Civil Engineers
    titleFRP-Needles as Discrete Reinforcement in Concrete
    typeJournal Paper
    journal volume29
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002033
    page04017175
    treeJournal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian