YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite Layer Formulations for Land Subsidence due to Groundwater Withdrawal

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 011
    Author:
    Feng Zhou
    ,
    Jin Xu
    ,
    Xudong Wang
    DOI: 10.1061/(ASCE)GM.1943-5622.0000996
    Publisher: American Society of Civil Engineers
    Abstract: A finite-layer method (FLM) based on consolidation theory is presented for land subsidence due to groundwater withdrawal. The groundwater flow in aquifer systems and the displacement within soil skeletons are approximated by an integration of the standard finite-element method (FEM) in the vertical direction and analytical techniques in the other two spatial directions. By virtue of the analytical eigenfunctions introduced in the formulation, the FEM-weighted residual equations can be decoupled into small-scale linear subsystems, and the formulas for coefficient matrices and flow vectors can be obtained explicitly. Numerical examples are presented to verify the validity of the presented solution through comparisons with available analytical and experimental results. The study also shows that the compressibility of pore water has a significant influence on the pumping-induced subsidence process. The numerical applications to multilayered aquifer systems and horizontal wells are presented to demonstrate the applicability and efficiency of the present method.
    • Download: (1.750Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite Layer Formulations for Land Subsidence due to Groundwater Withdrawal

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243824
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorFeng Zhou
    contributor authorJin Xu
    contributor authorXudong Wang
    date accessioned2017-12-30T12:57:08Z
    date available2017-12-30T12:57:08Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000996.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243824
    description abstractA finite-layer method (FLM) based on consolidation theory is presented for land subsidence due to groundwater withdrawal. The groundwater flow in aquifer systems and the displacement within soil skeletons are approximated by an integration of the standard finite-element method (FEM) in the vertical direction and analytical techniques in the other two spatial directions. By virtue of the analytical eigenfunctions introduced in the formulation, the FEM-weighted residual equations can be decoupled into small-scale linear subsystems, and the formulas for coefficient matrices and flow vectors can be obtained explicitly. Numerical examples are presented to verify the validity of the presented solution through comparisons with available analytical and experimental results. The study also shows that the compressibility of pore water has a significant influence on the pumping-induced subsidence process. The numerical applications to multilayered aquifer systems and horizontal wells are presented to demonstrate the applicability and efficiency of the present method.
    publisherAmerican Society of Civil Engineers
    titleFinite Layer Formulations for Land Subsidence due to Groundwater Withdrawal
    typeJournal Paper
    journal volume17
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000996
    page04017099
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian