YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of the Deformation Characteristics of Natural Loess under the Stress Paths in Shield Tunnel Excavation

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 009
    Author:
    Mingjing Jiang
    ,
    Jun Sima
    ,
    Yujun Cui
    ,
    Haijun Hu
    ,
    Chuangbing Zhou
    ,
    Huayang Lei
    DOI: 10.1061/(ASCE)GM.1943-5622.0000972
    Publisher: American Society of Civil Engineers
    Abstract: Natural loess with large voids and weakly bonded structures is widespread in the arid areas of the world, particularly northwestern China. Recent experimental studies have shown that the mechanical behavior of natural loess is stress path dependent. In practice, soils influenced by the construction of earthen structures may undergo various complex stress paths that are very different from the conventional stress paths commonly considered in geolaboratory experiments. Because of the limitations of current technologies, real stress paths are difficult to obtain from field tests or physical modeling. This study focused on the deformation behavior of natural loess from Jingyang, China, under the stress paths around a shield tunnel. First, the stress paths around a shield tunnel were determined from the numerical data obtained at different positions in a distinct-element simulation of shield tunnel excavation in sand (for simplicity) and by using a novel method referred to as the equivalent stress ratio method. Second, a set of undrained triaxial tests were conducted using the conventional and complex stress paths. The experimental results demonstrate that the deformation characteristics of the loess are different at different positions around the shield tunnel, and the largest deformation appears in the lateral zone (0°). This indicates that the lateral zone is the key zone to be controlled during shield tunneling. In addition, the relationship between the stress increments and the strain increments varies with the stress path. In a complete unloading path, the behavior of natural loess is largely elastic and linear. On the contrary, in a complete loading path or semiloading path, the behavior is largely inelastic and nonlinear, and this behavior is associated with the stress state and recent stress history. These results are valuable in establishing the constitutive relationships for natural loess under complex stress paths and may be useful for the construction of shield tunnels in loess areas.
    • Download: (2.202Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of the Deformation Characteristics of Natural Loess under the Stress Paths in Shield Tunnel Excavation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243791
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorMingjing Jiang
    contributor authorJun Sima
    contributor authorYujun Cui
    contributor authorHaijun Hu
    contributor authorChuangbing Zhou
    contributor authorHuayang Lei
    date accessioned2017-12-30T12:56:56Z
    date available2017-12-30T12:56:56Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000972.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243791
    description abstractNatural loess with large voids and weakly bonded structures is widespread in the arid areas of the world, particularly northwestern China. Recent experimental studies have shown that the mechanical behavior of natural loess is stress path dependent. In practice, soils influenced by the construction of earthen structures may undergo various complex stress paths that are very different from the conventional stress paths commonly considered in geolaboratory experiments. Because of the limitations of current technologies, real stress paths are difficult to obtain from field tests or physical modeling. This study focused on the deformation behavior of natural loess from Jingyang, China, under the stress paths around a shield tunnel. First, the stress paths around a shield tunnel were determined from the numerical data obtained at different positions in a distinct-element simulation of shield tunnel excavation in sand (for simplicity) and by using a novel method referred to as the equivalent stress ratio method. Second, a set of undrained triaxial tests were conducted using the conventional and complex stress paths. The experimental results demonstrate that the deformation characteristics of the loess are different at different positions around the shield tunnel, and the largest deformation appears in the lateral zone (0°). This indicates that the lateral zone is the key zone to be controlled during shield tunneling. In addition, the relationship between the stress increments and the strain increments varies with the stress path. In a complete unloading path, the behavior of natural loess is largely elastic and linear. On the contrary, in a complete loading path or semiloading path, the behavior is largely inelastic and nonlinear, and this behavior is associated with the stress state and recent stress history. These results are valuable in establishing the constitutive relationships for natural loess under complex stress paths and may be useful for the construction of shield tunnels in loess areas.
    publisherAmerican Society of Civil Engineers
    titleExperimental Investigation of the Deformation Characteristics of Natural Loess under the Stress Paths in Shield Tunnel Excavation
    typeJournal Paper
    journal volume17
    journal issue9
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000972
    page04017079
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian