YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Methodology for the Estimation of Wetting Front Length and Potential Recharge under Variable Depth of Ponding

    Source: Journal of Irrigation and Drainage Engineering:;2016:;Volume ( 142 ):;issue: 001
    Author:
    Shakir Ali
    ,
    Narayan C. Ghosh
    DOI: 10.1061/(ASCE)IR.1943-4774.0000921
    Publisher: American Society of Civil Engineers
    Abstract: A methodology for determining the length of advancement of wetting front and potential groundwater recharge under variable depth of ponding is presented. The methodology provides no restrictions to infiltration time period, depth, and nature of ponding and soil types. Performance of the proposed methodology has been compared with other models using the published laboratory and field experimental data. The quantitative statistics, namely, coefficient of determination (R2), index of agreement (d), and percent bias (PB), are utilized to assess the performance of the proposed methodology. Results show that the proposed methodology worked with the same potential as the numerically rigorous solution of the other models. The quantitative statistics R2 and d between the models’ estimates approached unity. Analyzed results shows that the proposed methodology for estimation of advancement of wetting front, cumulative potential recharge, and 5rate of potential recharge has a maximum PB of −12.98, −14.33, and 12.62%, respectively, in comparison to the other models, which is within permissible limit of 25%. The derived methodology is also successfully applied with 3 years (2006–2008) of field data from small recharge ponds located over a watershed in the semiarid region of India. The response of the methodology is found most promising for simulating the length of advancement of wetting front and corresponding potential groundwater recharge from small recharge ponds. Results of the comparative and field studies of the proposed methodology under variable depth of ponding over a variety of soils demonstrated the capability of the proposed methodology for their field uses to design artificial groundwater recharging facilities, irrigation systems, and resolving solute transport problems.
    • Download: (496.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Methodology for the Estimation of Wetting Front Length and Potential Recharge under Variable Depth of Ponding

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243650
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorShakir Ali
    contributor authorNarayan C. Ghosh
    date accessioned2017-12-30T12:56:20Z
    date available2017-12-30T12:56:20Z
    date issued2016
    identifier other%28ASCE%29IR.1943-4774.0000921.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243650
    description abstractA methodology for determining the length of advancement of wetting front and potential groundwater recharge under variable depth of ponding is presented. The methodology provides no restrictions to infiltration time period, depth, and nature of ponding and soil types. Performance of the proposed methodology has been compared with other models using the published laboratory and field experimental data. The quantitative statistics, namely, coefficient of determination (R2), index of agreement (d), and percent bias (PB), are utilized to assess the performance of the proposed methodology. Results show that the proposed methodology worked with the same potential as the numerically rigorous solution of the other models. The quantitative statistics R2 and d between the models’ estimates approached unity. Analyzed results shows that the proposed methodology for estimation of advancement of wetting front, cumulative potential recharge, and 5rate of potential recharge has a maximum PB of −12.98, −14.33, and 12.62%, respectively, in comparison to the other models, which is within permissible limit of 25%. The derived methodology is also successfully applied with 3 years (2006–2008) of field data from small recharge ponds located over a watershed in the semiarid region of India. The response of the methodology is found most promising for simulating the length of advancement of wetting front and corresponding potential groundwater recharge from small recharge ponds. Results of the comparative and field studies of the proposed methodology under variable depth of ponding over a variety of soils demonstrated the capability of the proposed methodology for their field uses to design artificial groundwater recharging facilities, irrigation systems, and resolving solute transport problems.
    publisherAmerican Society of Civil Engineers
    titleMethodology for the Estimation of Wetting Front Length and Potential Recharge under Variable Depth of Ponding
    typeJournal Paper
    journal volume142
    journal issue1
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0000921
    page04015027
    treeJournal of Irrigation and Drainage Engineering:;2016:;Volume ( 142 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian