YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Rock Bolt Model and Numerical Implementation in Numerical Manifold Method

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 005
    Author:
    Wei Wei
    ,
    Qinghui Jiang
    ,
    Jun Peng
    DOI: 10.1061/(ASCE)GM.1943-5622.0000669
    Publisher: American Society of Civil Engineers
    Abstract: A beam-element-based rock bolt model is proposed in this paper. The proposed model can not only simulate the compression and tension deformations of bolts in the rock block but also capture the interaction between the bolt and the joint. The antitension, antishear, and antirotation of bolts near the joint and the hardening characteristics of bolts after the plastic yielding can be comprehensively reflected using the proposed model. The rock bolt model has been incorporated into the original numerical manifold method (NMM) procedure developed for realistic applications. In the improved NMM procedure, the bolt can be input as the physical mesh, the layout of which is not correlated with the mathematical cover. Hence, the preprocess is simplified, and numerical simulation of a large number of bolts can be easily carried out. The results of this improved procedure for bolt modeling were verified with a direct shear test of an anchored joint. Finally, the procedure was applied to evaluate the reinforcement effect of bolts in the underground powerhouse of the Shuibuya hydropower station. The results show that the deformation behavior of the anchored rock mass and the reinforcement effect of bolts can be well captured by the bolt model.
    • Download: (1.217Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Rock Bolt Model and Numerical Implementation in Numerical Manifold Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243635
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorWei Wei
    contributor authorQinghui Jiang
    contributor authorJun Peng
    date accessioned2017-12-30T12:56:17Z
    date available2017-12-30T12:56:17Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000669.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243635
    description abstractA beam-element-based rock bolt model is proposed in this paper. The proposed model can not only simulate the compression and tension deformations of bolts in the rock block but also capture the interaction between the bolt and the joint. The antitension, antishear, and antirotation of bolts near the joint and the hardening characteristics of bolts after the plastic yielding can be comprehensively reflected using the proposed model. The rock bolt model has been incorporated into the original numerical manifold method (NMM) procedure developed for realistic applications. In the improved NMM procedure, the bolt can be input as the physical mesh, the layout of which is not correlated with the mathematical cover. Hence, the preprocess is simplified, and numerical simulation of a large number of bolts can be easily carried out. The results of this improved procedure for bolt modeling were verified with a direct shear test of an anchored joint. Finally, the procedure was applied to evaluate the reinforcement effect of bolts in the underground powerhouse of the Shuibuya hydropower station. The results show that the deformation behavior of the anchored rock mass and the reinforcement effect of bolts can be well captured by the bolt model.
    publisherAmerican Society of Civil Engineers
    titleNew Rock Bolt Model and Numerical Implementation in Numerical Manifold Method
    typeJournal Paper
    journal volume17
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000669
    pageE4016004
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian