YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nappe Flow Surges down a Rough-Stepped Sloping Channel

    Source: Journal of Hydrologic Engineering:;2017:;Volume ( 022 ):;issue: 010
    Author:
    Fengguang Yang
    ,
    Vijay P. Singh
    ,
    Xiekang Wang
    ,
    Xingnian Liu
    DOI: 10.1061/(ASCE)HE.1943-5584.0001570
    Publisher: American Society of Civil Engineers
    Abstract: Nappe flow applies to small discharges, and investigation of nappe flow surges helps to understand the mechanism of water flow in stepped open channels. The objective of this paper is to investigate the nappe flow surge propagation down stepped open channels. First, an analytical solution of dam-break shock waves or flood waves is derived. Then, the theoretical solution is used to calculate the wavefront and celerity and is verified using experiments on surging waters down a stepped slope in a 20-m-long and 0.5-m-wide open channel under three conditions: one for smooth bed surface and the others for rough bed surface glued with uniform sediment (of diameter ds=1.715  mm and ds=3.5  mm). For calculating the wavefront propagation in a stepped open channel, a formula for resistance, composed of grain resistance and step geometry resistance, is developed. Unlike skimming flow, the roughness of step surface in the nappe flow regime influences the friction factor fs. Results show that the friction factor increases with the relative roughness height (ds/d0). The theoretical solution for the wavefront location and celerity is then revised by combining the friction formula, and the revised solution is tested for a wide range of experimental data. Test results show that the revised solution fits the measured data quite well. Comparing with the solution previously derived, the revised solution derived in this study more accurately predicts the wavefront location and celerity for the nappe flow condition.
    • Download: (1.335Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nappe Flow Surges down a Rough-Stepped Sloping Channel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243605
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorFengguang Yang
    contributor authorVijay P. Singh
    contributor authorXiekang Wang
    contributor authorXingnian Liu
    date accessioned2017-12-30T12:56:10Z
    date available2017-12-30T12:56:10Z
    date issued2017
    identifier other%28ASCE%29HE.1943-5584.0001570.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243605
    description abstractNappe flow applies to small discharges, and investigation of nappe flow surges helps to understand the mechanism of water flow in stepped open channels. The objective of this paper is to investigate the nappe flow surge propagation down stepped open channels. First, an analytical solution of dam-break shock waves or flood waves is derived. Then, the theoretical solution is used to calculate the wavefront and celerity and is verified using experiments on surging waters down a stepped slope in a 20-m-long and 0.5-m-wide open channel under three conditions: one for smooth bed surface and the others for rough bed surface glued with uniform sediment (of diameter ds=1.715  mm and ds=3.5  mm). For calculating the wavefront propagation in a stepped open channel, a formula for resistance, composed of grain resistance and step geometry resistance, is developed. Unlike skimming flow, the roughness of step surface in the nappe flow regime influences the friction factor fs. Results show that the friction factor increases with the relative roughness height (ds/d0). The theoretical solution for the wavefront location and celerity is then revised by combining the friction formula, and the revised solution is tested for a wide range of experimental data. Test results show that the revised solution fits the measured data quite well. Comparing with the solution previously derived, the revised solution derived in this study more accurately predicts the wavefront location and celerity for the nappe flow condition.
    publisherAmerican Society of Civil Engineers
    titleNappe Flow Surges down a Rough-Stepped Sloping Channel
    typeJournal Paper
    journal volume22
    journal issue10
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001570
    page04017044
    treeJournal of Hydrologic Engineering:;2017:;Volume ( 022 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian