YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Curve Number and Runoff Coefficients for Extensive Living Roofs

    Source: Journal of Hydrologic Engineering:;2016:;Volume ( 021 ):;issue: 003
    Author:
    Elizabeth Fassman-Beck
    ,
    William Hunt
    ,
    Robert Berghage
    ,
    Donald Carpenter
    ,
    Timothy Kurtz
    ,
    Virginia Stovin
    ,
    Bridget Wadzuk
    DOI: 10.1061/(ASCE)HE.1943-5584.0001318
    Publisher: American Society of Civil Engineers
    Abstract: Living roofs are a green infrastructure (GI)/low-impact development (LID) stormwater control measure (SCM) increasingly drawing worldwide attention. Despite substantial performance evidence in the literature, the lack of a curve number (CN) or volumetric runoff coefficient (Cv) to apply to prescribed methodologies for planning and regulatory submissions may be perceived as a barrier for implementation. Paired rainfall–runoff data were analyzed for up to 21 living roofs with varying configurations and in different climates from studies identified in the literature and previously-unpublished data. Frequency analysis of empirical performance evidence from 14 living roofs indicates that meaningful runoff is not generated from the majority of small rainfall events. Where planning requires the use of the CN method, a step function is suggested: (1) runoff volume=0 for design rainfall events up to 20–30 mm, if appropriate moisture storage capacity is provided by the substrate; (2) runoff volume is determined with CN=84 for larger rainfall events, or for events that exceed the actual moisture storage capacity. Cv increases with rainfall depth (P), and may be reasonably predicted for 16 living roofs by Cv=a*exp(b/P), where regression coefficients a and b were empirically determined for each climate zone. CN or Cv values are considered best fit, but they are generally poor representations of actual living roof hydrology. Further work is required to develop living roof specific, verified continuous simulation computer-modeling techniques and to quantify the role of the plants in stormwater control.
    • Download: (978.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Curve Number and Runoff Coefficients for Extensive Living Roofs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243564
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorElizabeth Fassman-Beck
    contributor authorWilliam Hunt
    contributor authorRobert Berghage
    contributor authorDonald Carpenter
    contributor authorTimothy Kurtz
    contributor authorVirginia Stovin
    contributor authorBridget Wadzuk
    date accessioned2017-12-30T12:56:01Z
    date available2017-12-30T12:56:01Z
    date issued2016
    identifier other%28ASCE%29HE.1943-5584.0001318.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243564
    description abstractLiving roofs are a green infrastructure (GI)/low-impact development (LID) stormwater control measure (SCM) increasingly drawing worldwide attention. Despite substantial performance evidence in the literature, the lack of a curve number (CN) or volumetric runoff coefficient (Cv) to apply to prescribed methodologies for planning and regulatory submissions may be perceived as a barrier for implementation. Paired rainfall–runoff data were analyzed for up to 21 living roofs with varying configurations and in different climates from studies identified in the literature and previously-unpublished data. Frequency analysis of empirical performance evidence from 14 living roofs indicates that meaningful runoff is not generated from the majority of small rainfall events. Where planning requires the use of the CN method, a step function is suggested: (1) runoff volume=0 for design rainfall events up to 20–30 mm, if appropriate moisture storage capacity is provided by the substrate; (2) runoff volume is determined with CN=84 for larger rainfall events, or for events that exceed the actual moisture storage capacity. Cv increases with rainfall depth (P), and may be reasonably predicted for 16 living roofs by Cv=a*exp(b/P), where regression coefficients a and b were empirically determined for each climate zone. CN or Cv values are considered best fit, but they are generally poor representations of actual living roof hydrology. Further work is required to develop living roof specific, verified continuous simulation computer-modeling techniques and to quantify the role of the plants in stormwater control.
    publisherAmerican Society of Civil Engineers
    titleCurve Number and Runoff Coefficients for Extensive Living Roofs
    typeJournal Paper
    journal volume21
    journal issue3
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001318
    page04015073
    treeJournal of Hydrologic Engineering:;2016:;Volume ( 021 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian