YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strength and Dilatancy Behaviors of Dense Modeled Rockfill Material in General Stress Space

    Source: International Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 005
    Author:
    Yang Xiao
    ,
    Hanlong Liu
    ,
    Hong Liu
    ,
    Yumin Chen
    ,
    Wengang Zhang
    DOI: 10.1061/(ASCE)GM.1943-5622.0000645
    Publisher: American Society of Civil Engineers
    Abstract: The strength and dilatancy behaviors of modeled dense rockfill material were systematically investigated through a series of true triaxial compression tests at different minor principal stress and intermediate principal stress ratios. It was found that the intermediate principal stress ratio had great influence on the critical-state friction angle, peak-state friction angle, and maximum dilatancy of the modeled rockfill material. Both the critical-state and peak-state friction angles at a given confining pressure first increased and then decreased with an increase in the intermediate principal stress ratio. An increase in the minor principal stress led to a decrease in both the critical-state and peak-state friction angles at a given intermediate principal stress ratio. The maximum dilatancy decreased with an increase in the minor principal stress or the intermediate principal stress ratio. It was also found that the intermediate principal stress ratio significantly affected the relationship between the peak-state friction angle and maximum dilatancy. An adapted stress–dilatancy equation (incorporating a state index and a function of the intermediate principal stress ratio) could be used to capture the stress–dilatancy behaviors of modeled rockfill materials at different intermediate principal stress ratios.
    • Download: (7.425Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strength and Dilatancy Behaviors of Dense Modeled Rockfill Material in General Stress Space

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243469
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorYang Xiao
    contributor authorHanlong Liu
    contributor authorHong Liu
    contributor authorYumin Chen
    contributor authorWengang Zhang
    date accessioned2017-12-30T12:55:31Z
    date available2017-12-30T12:55:31Z
    date issued2016
    identifier other%28ASCE%29GM.1943-5622.0000645.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243469
    description abstractThe strength and dilatancy behaviors of modeled dense rockfill material were systematically investigated through a series of true triaxial compression tests at different minor principal stress and intermediate principal stress ratios. It was found that the intermediate principal stress ratio had great influence on the critical-state friction angle, peak-state friction angle, and maximum dilatancy of the modeled rockfill material. Both the critical-state and peak-state friction angles at a given confining pressure first increased and then decreased with an increase in the intermediate principal stress ratio. An increase in the minor principal stress led to a decrease in both the critical-state and peak-state friction angles at a given intermediate principal stress ratio. The maximum dilatancy decreased with an increase in the minor principal stress or the intermediate principal stress ratio. It was also found that the intermediate principal stress ratio significantly affected the relationship between the peak-state friction angle and maximum dilatancy. An adapted stress–dilatancy equation (incorporating a state index and a function of the intermediate principal stress ratio) could be used to capture the stress–dilatancy behaviors of modeled rockfill materials at different intermediate principal stress ratios.
    publisherAmerican Society of Civil Engineers
    titleStrength and Dilatancy Behaviors of Dense Modeled Rockfill Material in General Stress Space
    typeJournal Paper
    journal volume16
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000645
    page04016015
    treeInternational Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian