YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Moso Bamboo Soil-Nailed Wall and Its 3D Nonlinear Numerical Analysis

    Source: International Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 005
    Author:
    Zi-Hang Dai
    ,
    Wei-Dong Guo
    ,
    Gui-Xin Zheng
    ,
    Yu Ou
    ,
    Yan-Jia Chen
    DOI: 10.1061/(ASCE)GM.1943-5622.0000634
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a new earth-retaining structure, the moso bamboo soil-nailed wall. Moso bamboo (including branches) is employed as soil nails and piles, and used to weave bamboo strip grids (replacing rebar grids) for sprayed-concrete surface courses. In this paper, the design and construction methods of this structure are elaborated using laboratory and field tests, and numerical simulations for two completed projects with respect to stability and deformation, respectively. In-situ tests show that the pulling capacity of bamboo nails (with branches) increased by ∼2.5–2.8 times in stiff soil or soft clay, respectively, compared with steel-pipe nails. For one wall in soft clay, numerical analysis was conducted, which verified the stability of the bamboo-reinforced system (compared with the soil-nailed wall constructed with steel-pipe nails, which failed). For another wall, the deformation and internal force of the structure were obtained using three-dimensional (3D) nonlinear numerical software. The prediction agrees well with the measured settlements, and has good accuracy against the measured horizontal displacements. The study indicates that the row of nails the lowest level receives the highest axial force (which requires the longest length). This trend is opposite to that in using conventional soil-nailed walls. The moso bamboo method renders an increase in the depth of sliding and thus the stability of excavation, which failed in the wall constructed with conventional steel-pipe soil nails.
    • Download: (6.743Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Moso Bamboo Soil-Nailed Wall and Its 3D Nonlinear Numerical Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243380
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorZi-Hang Dai
    contributor authorWei-Dong Guo
    contributor authorGui-Xin Zheng
    contributor authorYu Ou
    contributor authorYan-Jia Chen
    date accessioned2017-12-30T12:55:03Z
    date available2017-12-30T12:55:03Z
    date issued2016
    identifier other%28ASCE%29GM.1943-5622.0000634.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243380
    description abstractThis paper presents a new earth-retaining structure, the moso bamboo soil-nailed wall. Moso bamboo (including branches) is employed as soil nails and piles, and used to weave bamboo strip grids (replacing rebar grids) for sprayed-concrete surface courses. In this paper, the design and construction methods of this structure are elaborated using laboratory and field tests, and numerical simulations for two completed projects with respect to stability and deformation, respectively. In-situ tests show that the pulling capacity of bamboo nails (with branches) increased by ∼2.5–2.8 times in stiff soil or soft clay, respectively, compared with steel-pipe nails. For one wall in soft clay, numerical analysis was conducted, which verified the stability of the bamboo-reinforced system (compared with the soil-nailed wall constructed with steel-pipe nails, which failed). For another wall, the deformation and internal force of the structure were obtained using three-dimensional (3D) nonlinear numerical software. The prediction agrees well with the measured settlements, and has good accuracy against the measured horizontal displacements. The study indicates that the row of nails the lowest level receives the highest axial force (which requires the longest length). This trend is opposite to that in using conventional soil-nailed walls. The moso bamboo method renders an increase in the depth of sliding and thus the stability of excavation, which failed in the wall constructed with conventional steel-pipe soil nails.
    publisherAmerican Society of Civil Engineers
    titleMoso Bamboo Soil-Nailed Wall and Its 3D Nonlinear Numerical Analysis
    typeJournal Paper
    journal volume16
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000634
    page04016012
    treeInternational Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian