YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Monitoring Methods and Designs for Evaluating Bioretention Performance

    Source: Journal of Environmental Engineering:;2017:;Volume ( 143 ):;issue: 012
    Author:
    Amanda Cording
    ,
    Stephanie Hurley
    ,
    David Whitney
    DOI: 10.1061/(ASCE)EE.1943-7870.0001276
    Publisher: American Society of Civil Engineers
    Abstract: Roadside bioretention systems, also known as green streets are becoming increasingly popular, and have widespread potential to reduce pollutant loads coming from road runoff. However, the installation of these systems is outpacing the research regarding the comparative effectiveness of specific design features. Monitoring is a required component of many stormwater regulatory programs, and can provide vital feedback to designers and engineers, lower costs, and determine long-term effectiveness and maintenance requirements, yet very few bioretention systems are monitored. For professionals that are interested in performance assessment, there are very few descriptions of monitoring infrastructure for small drainage areas that are detailed enough to replicate during new bioretention construction projects. This research describes the innovative infrastructure used at the University of Vermont (UVM) Bioretention Laboratory to accurately measure pollutant mass load reduction by roadside bioretention systems. The inflow and outflow monitoring infrastructure designs are provided in enough detail to be adapted and/or replicated in other field settings. The steps taken to integrate the infrastructure into new construction are also provided. Ninety degree v-notch and compound weirs were installed at the inflow and outflow of eight bioretention systems, respectively. Differential pressure transducers related water height to flow rate. A time-based discrete sampling methodology was tested and found to adequately sample multiple points throughout the inflow and outflow hydrographs. This allowed for the comparison of pollutant mass removal among different bioretention designs on an equal volume basis.
    • Download: (904.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Monitoring Methods and Designs for Evaluating Bioretention Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243272
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorAmanda Cording
    contributor authorStephanie Hurley
    contributor authorDavid Whitney
    date accessioned2017-12-30T12:54:38Z
    date available2017-12-30T12:54:38Z
    date issued2017
    identifier other%28ASCE%29EE.1943-7870.0001276.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243272
    description abstractRoadside bioretention systems, also known as green streets are becoming increasingly popular, and have widespread potential to reduce pollutant loads coming from road runoff. However, the installation of these systems is outpacing the research regarding the comparative effectiveness of specific design features. Monitoring is a required component of many stormwater regulatory programs, and can provide vital feedback to designers and engineers, lower costs, and determine long-term effectiveness and maintenance requirements, yet very few bioretention systems are monitored. For professionals that are interested in performance assessment, there are very few descriptions of monitoring infrastructure for small drainage areas that are detailed enough to replicate during new bioretention construction projects. This research describes the innovative infrastructure used at the University of Vermont (UVM) Bioretention Laboratory to accurately measure pollutant mass load reduction by roadside bioretention systems. The inflow and outflow monitoring infrastructure designs are provided in enough detail to be adapted and/or replicated in other field settings. The steps taken to integrate the infrastructure into new construction are also provided. Ninety degree v-notch and compound weirs were installed at the inflow and outflow of eight bioretention systems, respectively. Differential pressure transducers related water height to flow rate. A time-based discrete sampling methodology was tested and found to adequately sample multiple points throughout the inflow and outflow hydrographs. This allowed for the comparison of pollutant mass removal among different bioretention designs on an equal volume basis.
    publisherAmerican Society of Civil Engineers
    titleMonitoring Methods and Designs for Evaluating Bioretention Performance
    typeJournal Paper
    journal volume143
    journal issue12
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001276
    page05017006
    treeJournal of Environmental Engineering:;2017:;Volume ( 143 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian