YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Lagrangian Model of Sediment Oxygen Demand and Reaeration Flux Coevolution in Streams

    Source: Journal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 007
    Author:
    David M. Waterman
    ,
    Xiaofeng Liu
    ,
    Davide Motta
    ,
    Marcelo H. García
    DOI: 10.1061/(ASCE)EE.1943-7870.0001095
    Publisher: American Society of Civil Engineers
    Abstract: An analytical model is developed for unidirectional-flow waterways in which the dissolved oxygen (DO) mass balance is dominated by reaeration and sediment oxygen demand (SOD) fluxes. To accurately represent the feedback between the two principal fluxes and the resulting spatial distribution of depth-averaged DO concentration (CDO) in the water column, formulations for the fluxes are implemented that are consistent with mass transfer theory rather than commonly used formulations (e.g., zeroth-order SOD) that neglect mass transfer physics. Water-side and sediment-side processes are incorporated into the SOD formulation; the sediment-side processes are simplified and parameterized empirically. The resulting DO mass conservation equation is expressed as a first-order linear ordinary differential equation. The model has similarities to the classic Streeter–Phelps model in the following respects: (1) it implements a Lagrangian control volume, (2) it expresses the competition between two flux or source/sink terms in the DO mass balance, and (3) it applies downstream of a flow or DO introduction location. The analytical solution yields a steady-state longitudinal CDO profile that spatially evolves to an asymptotic condition whereby reaeration and SOD fluxes have equal values. The difference in CDO evolution when implementing a zeroth-order SOD formulation versus the first-order SOD formulation is highlighted. The flow management implications are discussed and an example calculation is presented for the case of flow augmentation in Bubbly Creek in Chicago, Illinois.
    • Download: (435.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Lagrangian Model of Sediment Oxygen Demand and Reaeration Flux Coevolution in Streams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243255
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorDavid M. Waterman
    contributor authorXiaofeng Liu
    contributor authorDavide Motta
    contributor authorMarcelo H. García
    date accessioned2017-12-30T12:54:33Z
    date available2017-12-30T12:54:33Z
    date issued2016
    identifier other%28ASCE%29EE.1943-7870.0001095.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243255
    description abstractAn analytical model is developed for unidirectional-flow waterways in which the dissolved oxygen (DO) mass balance is dominated by reaeration and sediment oxygen demand (SOD) fluxes. To accurately represent the feedback between the two principal fluxes and the resulting spatial distribution of depth-averaged DO concentration (CDO) in the water column, formulations for the fluxes are implemented that are consistent with mass transfer theory rather than commonly used formulations (e.g., zeroth-order SOD) that neglect mass transfer physics. Water-side and sediment-side processes are incorporated into the SOD formulation; the sediment-side processes are simplified and parameterized empirically. The resulting DO mass conservation equation is expressed as a first-order linear ordinary differential equation. The model has similarities to the classic Streeter–Phelps model in the following respects: (1) it implements a Lagrangian control volume, (2) it expresses the competition between two flux or source/sink terms in the DO mass balance, and (3) it applies downstream of a flow or DO introduction location. The analytical solution yields a steady-state longitudinal CDO profile that spatially evolves to an asymptotic condition whereby reaeration and SOD fluxes have equal values. The difference in CDO evolution when implementing a zeroth-order SOD formulation versus the first-order SOD formulation is highlighted. The flow management implications are discussed and an example calculation is presented for the case of flow augmentation in Bubbly Creek in Chicago, Illinois.
    publisherAmerican Society of Civil Engineers
    titleAnalytical Lagrangian Model of Sediment Oxygen Demand and Reaeration Flux Coevolution in Streams
    typeJournal Paper
    journal volume142
    journal issue7
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001095
    page04016028
    treeJournal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian