YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Monitoring Network Design for Wind-Driven and Tidal Estuaries

    Source: Journal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 012
    Author:
    Mustafa M. Aral
    ,
    Kijin Nam
    DOI: 10.1061/(ASCE)EE.1943-7870.0001051
    Publisher: American Society of Civil Engineers
    Abstract: Water quality is an important aspect of health assessment of rivers, lakes, and estuaries, which requires systematic data collection from various components of the aquatic environment. The analysis of this data is used to judge the health state of these environments. It is well known that long-term surveillance of surface waters is costly. Thus, sound strategies are necessary to select the best locations of monitoring stations to collect the most reliable data efficiently to improve the performance of a monitoring system. This can be accomplished by optimizing the location of monitoring stations with respect to the hydrodynamic and transport characteristics of the surface water system. It is expected that such an approach may improve the effectiveness and also reduce the overall cost of the monitoring system. Since the hydrodynamics and the contaminant migration pathways in surface waters are complex, the optimal solution of this problem is also complex. To analyze this problem, a two-dimensional hydrodynamic simulation model is developed using the finite-element method. The best monitoring locations are selected that minimize the detection time of the potential contaminant presence in the surface water body and maximizes the reliability of the system performance. Due to the nonlinear nature of the hydrodynamics, a genetic algorithm (GA) is used for the solution of the optimization problem. Examples are provided for wind-driven hydraulic circulation for a circular lake, and tidal and wind-driven circulation in a natural tidal estuary.
    • Download: (20.22Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Monitoring Network Design for Wind-Driven and Tidal Estuaries

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243239
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorMustafa M. Aral
    contributor authorKijin Nam
    date accessioned2017-12-30T12:54:29Z
    date available2017-12-30T12:54:29Z
    date issued2016
    identifier other%28ASCE%29EE.1943-7870.0001051.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243239
    description abstractWater quality is an important aspect of health assessment of rivers, lakes, and estuaries, which requires systematic data collection from various components of the aquatic environment. The analysis of this data is used to judge the health state of these environments. It is well known that long-term surveillance of surface waters is costly. Thus, sound strategies are necessary to select the best locations of monitoring stations to collect the most reliable data efficiently to improve the performance of a monitoring system. This can be accomplished by optimizing the location of monitoring stations with respect to the hydrodynamic and transport characteristics of the surface water system. It is expected that such an approach may improve the effectiveness and also reduce the overall cost of the monitoring system. Since the hydrodynamics and the contaminant migration pathways in surface waters are complex, the optimal solution of this problem is also complex. To analyze this problem, a two-dimensional hydrodynamic simulation model is developed using the finite-element method. The best monitoring locations are selected that minimize the detection time of the potential contaminant presence in the surface water body and maximizes the reliability of the system performance. Due to the nonlinear nature of the hydrodynamics, a genetic algorithm (GA) is used for the solution of the optimization problem. Examples are provided for wind-driven hydraulic circulation for a circular lake, and tidal and wind-driven circulation in a natural tidal estuary.
    publisherAmerican Society of Civil Engineers
    titleOptimal Monitoring Network Design for Wind-Driven and Tidal Estuaries
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001051
    pageD4015002
    treeJournal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian