YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sorption and Desorption of Testosterone at Environmentally Relevant Levels: Effects of Aquatic Conditions and Soil Particle Size Fractions

    Source: Journal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 001
    Author:
    Yong Qi
    ,
    Tian C. Zhang
    DOI: 10.1061/(ASCE)EE.1943-7870.0001001
    Publisher: American Society of Civil Engineers
    Abstract: Sorption and desorption have been found to be critical in the fate and transport of hormones in soils. Previous study indicated that the sorption and desorption properties of soil particles of different size fractions associated with hormones were very different. However, the interaction mechanisms of hormones with these soil particles are still unclear. This study investigated the influence of aquatic conditions [e.g., temperature, hydrogen ion concentration (pH), ionic strength, soil/water ratio, organic matter] on the sorption and desorption of soil particles of three size fractions [i.e., sand (0.425–0.075 mm), silt (0.045–0.002 mm), and clay (0.6–2  μm)] associated with testosterone at environmentally relevant concentrations (i.e., 20–150  ng/L) in batch reactors. The results indicate that lower temperature will facilitate sorption but hinder desorption of testosterone onto/from all of the soil particles. Lower pH and higher organic matter content will favor the sorption of testosterone onto all of the soil particles, especially for clay, but will impede desorption. A higher soil/water ratio would impede desorption of testosterone from all of the soil particles. The main sorption mechanism of trace-level testosterone onto sand is electrostatic attraction, whereas that onto clay is mainly hydrogen bonding and functional groups, and that onto silt is in the middle of sand and clay. The study provides insights on controlling/predicting the behavior/fate of hormones in the soil environment.
    • Download: (869.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sorption and Desorption of Testosterone at Environmentally Relevant Levels: Effects of Aquatic Conditions and Soil Particle Size Fractions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243216
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorYong Qi
    contributor authorTian C. Zhang
    date accessioned2017-12-30T12:54:23Z
    date available2017-12-30T12:54:23Z
    date issued2016
    identifier other%28ASCE%29EE.1943-7870.0001001.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243216
    description abstractSorption and desorption have been found to be critical in the fate and transport of hormones in soils. Previous study indicated that the sorption and desorption properties of soil particles of different size fractions associated with hormones were very different. However, the interaction mechanisms of hormones with these soil particles are still unclear. This study investigated the influence of aquatic conditions [e.g., temperature, hydrogen ion concentration (pH), ionic strength, soil/water ratio, organic matter] on the sorption and desorption of soil particles of three size fractions [i.e., sand (0.425–0.075 mm), silt (0.045–0.002 mm), and clay (0.6–2  μm)] associated with testosterone at environmentally relevant concentrations (i.e., 20–150  ng/L) in batch reactors. The results indicate that lower temperature will facilitate sorption but hinder desorption of testosterone onto/from all of the soil particles. Lower pH and higher organic matter content will favor the sorption of testosterone onto all of the soil particles, especially for clay, but will impede desorption. A higher soil/water ratio would impede desorption of testosterone from all of the soil particles. The main sorption mechanism of trace-level testosterone onto sand is electrostatic attraction, whereas that onto clay is mainly hydrogen bonding and functional groups, and that onto silt is in the middle of sand and clay. The study provides insights on controlling/predicting the behavior/fate of hormones in the soil environment.
    publisherAmerican Society of Civil Engineers
    titleSorption and Desorption of Testosterone at Environmentally Relevant Levels: Effects of Aquatic Conditions and Soil Particle Size Fractions
    typeJournal Paper
    journal volume142
    journal issue1
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001001
    page04015045
    treeJournal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian