YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Selenium Biosorption and Recovery by Marine Aspergillus terreus in an Upflow Bioreactor

    Source: Journal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 009
    Author:
    Chinna Pandi Raja
    ,
    Jaya Mary Jacob
    ,
    Raj Mohan Balakrishnan
    DOI: 10.1061/(ASCE)EE.1943-7870.0000999
    Publisher: American Society of Civil Engineers
    Abstract: Experiments were conducted to study the Selenium (Se) biosorption and recovery by marine Aspergillus terreus in an upflow bioreactor for a period of 8 days. The Se tolerance of the marine fungus was initially confirmed by visual and microscopic observations that evinced intact fungal cells in an Se-amended medium with sparse changes in the spore texture and cellular number by the seventh day of biosorption studies in the upflow bioreactor. Further, the effect of pH and contact time on the percentage of Se biosorption, in an upflow bioreactor containing fungal pellets, was investigated. It was analyzed that pH ranges of 6–7 and a contact time of 5 days resulted in 85–87% biosorption of Se by the fungal biomass. The interaction of the fungus with the induced Se stress in the medium was monitored regularly for studying the uptake of the metalloid and the possible biosynthesis of Se nanoparticles. Analyses using ultraviolet visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) studies revealed the formation of crystalline Se nanocrystals with an average diameter of 500 nm on the fungal cell wall. Fourier transform infrared (FTIR) spectroscopic analysis indicated the possible involvement of fungal protein groups that aid the binding of the biosorbed Se nanoparticles on to the fungal cell wall.
    • Download: (7.516Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Selenium Biosorption and Recovery by Marine Aspergillus terreus in an Upflow Bioreactor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243214
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorChinna Pandi Raja
    contributor authorJaya Mary Jacob
    contributor authorRaj Mohan Balakrishnan
    date accessioned2017-12-30T12:54:22Z
    date available2017-12-30T12:54:22Z
    date issued2016
    identifier other%28ASCE%29EE.1943-7870.0000999.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243214
    description abstractExperiments were conducted to study the Selenium (Se) biosorption and recovery by marine Aspergillus terreus in an upflow bioreactor for a period of 8 days. The Se tolerance of the marine fungus was initially confirmed by visual and microscopic observations that evinced intact fungal cells in an Se-amended medium with sparse changes in the spore texture and cellular number by the seventh day of biosorption studies in the upflow bioreactor. Further, the effect of pH and contact time on the percentage of Se biosorption, in an upflow bioreactor containing fungal pellets, was investigated. It was analyzed that pH ranges of 6–7 and a contact time of 5 days resulted in 85–87% biosorption of Se by the fungal biomass. The interaction of the fungus with the induced Se stress in the medium was monitored regularly for studying the uptake of the metalloid and the possible biosynthesis of Se nanoparticles. Analyses using ultraviolet visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) studies revealed the formation of crystalline Se nanocrystals with an average diameter of 500 nm on the fungal cell wall. Fourier transform infrared (FTIR) spectroscopic analysis indicated the possible involvement of fungal protein groups that aid the binding of the biosorbed Se nanoparticles on to the fungal cell wall.
    publisherAmerican Society of Civil Engineers
    titleSelenium Biosorption and Recovery by Marine Aspergillus terreus in an Upflow Bioreactor
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000999
    pageC4015008
    treeJournal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian