YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    General Mean Velocity Distribution Law for Smooth-Wall Plane Couette Flow

    Source: Journal of Engineering Mechanics:;2018:;Volume ( 144 ):;issue: 001
    Author:
    Junke Guo
    DOI: 10.1061/(ASCE)EM.1943-7889.0001370
    Publisher: American Society of Civil Engineers
    Abstract: Plane Couette flow between two parallel smooth walls is one of the classic wall-bounded shear flows. Analytical description of this flow is still limited to the linear law for laminar flow, the classic law of the wall, and the velocity defect law for fully turbulent flow, although extensive direct numerical simulations (DNS) and laboratory experiments are available. This paper integrates the existing knowledge of mean velocity distribution from theory, experiments, and DNS into a single velocity distribution law by introducing a rational eddy viscosity model. Specifically, the eddy viscosity distribution is approximated by an even rational function which is cubic near the wall, linear in the log-law overlap, and symmetrical about the channel centerline. The rational eddy viscosity model leads to a general velocity distribution law in terms of four inverse hyperbolic tangent functions. This law reduces to the linear law for laminar flow, agrees with the classic van Driest law in the inner region, and is antisymmetrical about the channel centerline. Particularly, it well reproduces DNS and laboratory data for transitional and turbulent flows. Furthermore, this general velocity distribution law results in a general friction law. Finally, the rational eddy viscosity model has clear implications for other wall-bounded flows in future studies.
    • Download: (926.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      General Mean Velocity Distribution Law for Smooth-Wall Plane Couette Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243181
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorJunke Guo
    date accessioned2017-12-30T12:54:15Z
    date available2017-12-30T12:54:15Z
    date issued2018
    identifier other%28ASCE%29EM.1943-7889.0001370.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243181
    description abstractPlane Couette flow between two parallel smooth walls is one of the classic wall-bounded shear flows. Analytical description of this flow is still limited to the linear law for laminar flow, the classic law of the wall, and the velocity defect law for fully turbulent flow, although extensive direct numerical simulations (DNS) and laboratory experiments are available. This paper integrates the existing knowledge of mean velocity distribution from theory, experiments, and DNS into a single velocity distribution law by introducing a rational eddy viscosity model. Specifically, the eddy viscosity distribution is approximated by an even rational function which is cubic near the wall, linear in the log-law overlap, and symmetrical about the channel centerline. The rational eddy viscosity model leads to a general velocity distribution law in terms of four inverse hyperbolic tangent functions. This law reduces to the linear law for laminar flow, agrees with the classic van Driest law in the inner region, and is antisymmetrical about the channel centerline. Particularly, it well reproduces DNS and laboratory data for transitional and turbulent flows. Furthermore, this general velocity distribution law results in a general friction law. Finally, the rational eddy viscosity model has clear implications for other wall-bounded flows in future studies.
    publisherAmerican Society of Civil Engineers
    titleGeneral Mean Velocity Distribution Law for Smooth-Wall Plane Couette Flow
    typeJournal Paper
    journal volume144
    journal issue1
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001370
    page04017146
    treeJournal of Engineering Mechanics:;2018:;Volume ( 144 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian