YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Continuum Model for Free Vibration Analysis of Suspension Bridges

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 007
    Author:
    Sun-Gil Gwon
    ,
    Dong-Ho Choi
    DOI: 10.1061/(ASCE)EM.1943-7889.0001244
    Publisher: American Society of Civil Engineers
    Abstract: An improved continuum model of three-span suspension bridges has been developed to study the effects of hanger extensibility on free vertical vibrations. This model can be applied to both hinged and continuous girders. To obtain the equations of motion, coupled differential equations describing the vertical deflections of the main cable and the girder are derived with dimensionless parameters. Following the Galerkin method, with shape functions for the main cable and for hinged and continuous girders, equations of motion are obtained in matrix form. A compatibility equation is used to eliminate the additional horizontal force of the main cable in the equations. Natural frequencies of hinged and continuous suspension bridges are evaluated as a function of six dimensionless parameters: the relative elastic bending stiffness of the girder, the relative elastic axial stiffness of the main cable, the relative elastic axial stiffness of the hangers, the relative mass of the girder, the relative length of the side span, and the ratio of the main span sag to the maximum hanger length. Parametric studies are conducted in which each of these parameters is varied individually to observe its effect on the natural frequencies and to identify differences between a conventional model with inextensible hangers and the improved model with extensible hangers. It is found that hanger extensibility affects the natural frequencies and mode shapes of higher modes for suspension bridges with a large relative girder stiffness. This effect is slightly more pronounced for antisymmetric modes and continuous bridges. In addition, even for a bridge with a large relative girder stiffness, the hanger extensibility rarely affects the natural frequencies of higher modes if the bridge either has a large relative mass of the girder or a large relative length of the side span.
    • Download: (2.202Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Continuum Model for Free Vibration Analysis of Suspension Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243159
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorSun-Gil Gwon
    contributor authorDong-Ho Choi
    date accessioned2017-12-30T12:54:10Z
    date available2017-12-30T12:54:10Z
    date issued2017
    identifier other%28ASCE%29EM.1943-7889.0001244.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243159
    description abstractAn improved continuum model of three-span suspension bridges has been developed to study the effects of hanger extensibility on free vertical vibrations. This model can be applied to both hinged and continuous girders. To obtain the equations of motion, coupled differential equations describing the vertical deflections of the main cable and the girder are derived with dimensionless parameters. Following the Galerkin method, with shape functions for the main cable and for hinged and continuous girders, equations of motion are obtained in matrix form. A compatibility equation is used to eliminate the additional horizontal force of the main cable in the equations. Natural frequencies of hinged and continuous suspension bridges are evaluated as a function of six dimensionless parameters: the relative elastic bending stiffness of the girder, the relative elastic axial stiffness of the main cable, the relative elastic axial stiffness of the hangers, the relative mass of the girder, the relative length of the side span, and the ratio of the main span sag to the maximum hanger length. Parametric studies are conducted in which each of these parameters is varied individually to observe its effect on the natural frequencies and to identify differences between a conventional model with inextensible hangers and the improved model with extensible hangers. It is found that hanger extensibility affects the natural frequencies and mode shapes of higher modes for suspension bridges with a large relative girder stiffness. This effect is slightly more pronounced for antisymmetric modes and continuous bridges. In addition, even for a bridge with a large relative girder stiffness, the hanger extensibility rarely affects the natural frequencies of higher modes if the bridge either has a large relative mass of the girder or a large relative length of the side span.
    publisherAmerican Society of Civil Engineers
    titleImproved Continuum Model for Free Vibration Analysis of Suspension Bridges
    typeJournal Paper
    journal volume143
    journal issue7
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001244
    page04017038
    treeJournal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian