YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Granular Materials: Century-Long Research across Scales

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 004
    Author:
    Farhang Radjai
    ,
    Jean-Noël Roux
    ,
    Ali Daouadji
    DOI: 10.1061/(ASCE)EM.1943-7889.0001196
    Publisher: American Society of Civil Engineers
    Abstract: Granular materials are the most recurrent form of solid-state matter on Earth. They challenge researchers and engineers in various fields not only because they occur with a broad variety of grain sizes, shapes and interactions in nature and industry, but also because they show a rich panoply of mechanical states. Despite this polymorphism, all these different types of soils, powders, granules, ores, pharmaceutical products, etc., are instances of the granular matter with the same least common denominator of being sandlike (psammoid in Greek), i.e., solid grains interacting via frictional contacts. This review describes milestone contributions to the field of granular materials since the early elastic-plastic models developed for soils in the 1950s. The research on granular materials has grown into a vast multidisciplinary field in the 1980s with increasing focus on the microstructure and owing to new experimental tools and discrete simulation methods. It turns out that the granular texture, particle-scale kinematics, and force transmission are far more complex than presumed in early micromechanical models of granular materials. Hence, constitutive relations cannot easily be derived from the particle-scale behavior although advanced continuum models have been developed to account for anisotropy, intermediate stress, and complex loading paths. The subtle elastic properties and origins of bulk friction will be discussed, as well as the effects of particle shape and size distributions. The review covers also recent developments in macroscopic modeling such as the thermomechanical approach, anisotropic critical state theory, nonlocal modeling approach, inertial flows, and material instabilities. Finally, a brief account is given of open issues and some new frontiers and challenges in the field.
    • Download: (975.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Granular Materials: Century-Long Research across Scales

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243138
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorFarhang Radjai
    contributor authorJean-Noël Roux
    contributor authorAli Daouadji
    date accessioned2017-12-30T12:54:05Z
    date available2017-12-30T12:54:05Z
    date issued2017
    identifier other%28ASCE%29EM.1943-7889.0001196.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243138
    description abstractGranular materials are the most recurrent form of solid-state matter on Earth. They challenge researchers and engineers in various fields not only because they occur with a broad variety of grain sizes, shapes and interactions in nature and industry, but also because they show a rich panoply of mechanical states. Despite this polymorphism, all these different types of soils, powders, granules, ores, pharmaceutical products, etc., are instances of the granular matter with the same least common denominator of being sandlike (psammoid in Greek), i.e., solid grains interacting via frictional contacts. This review describes milestone contributions to the field of granular materials since the early elastic-plastic models developed for soils in the 1950s. The research on granular materials has grown into a vast multidisciplinary field in the 1980s with increasing focus on the microstructure and owing to new experimental tools and discrete simulation methods. It turns out that the granular texture, particle-scale kinematics, and force transmission are far more complex than presumed in early micromechanical models of granular materials. Hence, constitutive relations cannot easily be derived from the particle-scale behavior although advanced continuum models have been developed to account for anisotropy, intermediate stress, and complex loading paths. The subtle elastic properties and origins of bulk friction will be discussed, as well as the effects of particle shape and size distributions. The review covers also recent developments in macroscopic modeling such as the thermomechanical approach, anisotropic critical state theory, nonlocal modeling approach, inertial flows, and material instabilities. Finally, a brief account is given of open issues and some new frontiers and challenges in the field.
    publisherAmerican Society of Civil Engineers
    titleModeling Granular Materials: Century-Long Research across Scales
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001196
    page04017002
    treeJournal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian