YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fracture Analysis of FRP-Plated Notched Concrete Beams Subjected to Three-Point Bending

    Source: Journal of Engineering Mechanics:;2016:;Volume ( 142 ):;issue: 003
    Author:
    Jian-Jun Zheng
    ,
    Jian-Guo Dai
    ,
    Xing-Lang Fan
    DOI: 10.1061/(ASCE)EM.1943-7889.0001021
    Publisher: American Society of Civil Engineers
    Abstract: Three-point bending tests of fiber-reinforced polymer (FRP) plated notched concrete beams have great potential to become a standard test method for evaluating the shear bond performance of FRP-to-concrete interfaces. This paper presents an analytical approach to predict the full-range response of FRP-plated notched concrete beams. The focus of the analysis is to simulate the interactions between Mode II debonding of the FRP-to-concrete interface and Mode I fracture at the crack tip of the concrete beam. In analyzing the FRP-to-concrete interface, the slip is selected as the unknown function to derive a second-order ordinary differential equation, and the analytical relationship between the pull force of the FRP laminate and the interfacial slip at its loaded end is formulated. Crack propagation in concrete is modeled using the weight function method. The stress intensity factors induced by various external loads and internal forces are all given in an analytical manner. Finally, a global equation with one single unknown is established. The equation can be solved easily and good convergence is assured. The derived analytical solutions are verified with experimental results obtained from the literature. Further parametric studies reveal quantitatively the effects of various factors on the load-crack mouth opening displacement (CMOD) curve of the FRP-plated concrete beam, which is found to be characterized by two peak loads. The first and second peak loads increase with the increase in the strength of concrete, the thickness of the FRP laminate, and the interfacial bond strength. It is also found that increasing the initial crack length decreases the first peak load but exerts no effect on the second peak load.
    • Download: (750.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fracture Analysis of FRP-Plated Notched Concrete Beams Subjected to Three-Point Bending

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243050
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorJian-Jun Zheng
    contributor authorJian-Guo Dai
    contributor authorXing-Lang Fan
    date accessioned2017-12-30T12:53:45Z
    date available2017-12-30T12:53:45Z
    date issued2016
    identifier other%28ASCE%29EM.1943-7889.0001021.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243050
    description abstractThree-point bending tests of fiber-reinforced polymer (FRP) plated notched concrete beams have great potential to become a standard test method for evaluating the shear bond performance of FRP-to-concrete interfaces. This paper presents an analytical approach to predict the full-range response of FRP-plated notched concrete beams. The focus of the analysis is to simulate the interactions between Mode II debonding of the FRP-to-concrete interface and Mode I fracture at the crack tip of the concrete beam. In analyzing the FRP-to-concrete interface, the slip is selected as the unknown function to derive a second-order ordinary differential equation, and the analytical relationship between the pull force of the FRP laminate and the interfacial slip at its loaded end is formulated. Crack propagation in concrete is modeled using the weight function method. The stress intensity factors induced by various external loads and internal forces are all given in an analytical manner. Finally, a global equation with one single unknown is established. The equation can be solved easily and good convergence is assured. The derived analytical solutions are verified with experimental results obtained from the literature. Further parametric studies reveal quantitatively the effects of various factors on the load-crack mouth opening displacement (CMOD) curve of the FRP-plated concrete beam, which is found to be characterized by two peak loads. The first and second peak loads increase with the increase in the strength of concrete, the thickness of the FRP laminate, and the interfacial bond strength. It is also found that increasing the initial crack length decreases the first peak load but exerts no effect on the second peak load.
    publisherAmerican Society of Civil Engineers
    titleFracture Analysis of FRP-Plated Notched Concrete Beams Subjected to Three-Point Bending
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001021
    page04015096
    treeJournal of Engineering Mechanics:;2016:;Volume ( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian