Show simple item record

contributor authorHoffman
contributor authorAllen H.;Teng
contributor authorZhongzhao;Zheng
contributor authorJie;Wu
contributor authorZheyang;Woodard
contributor authorPamela K.;Billiar
contributor authorKristen L.;Wang
contributor authorLiang;Tang
contributor authorDalin
date accessioned2017-12-30T11:43:55Z
date available2017-12-30T11:43:55Z
date copyright9/28/2017 12:00:00 AM
date issued2017
identifier issn0148-0731
identifier otherbio_139_12_124501.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242938
description abstractArteries can be considered as layered composite material. Experimental data on the stiffness of human atherosclerotic carotid arteries and their media and adventitia layers are very limited. This study used uniaxial tests to determine the stiffness (tangent modulus) of human carotid artery sections containing American Heart Association type II and III lesions. Axial and circumferential oriented adventitia, media, and full thickness specimens were prepared from six human carotid arteries (total tissue strips: 71). Each artery yielded 12 specimens with two specimens in each of the following six categories; axial full thickness, axial adventitia (AA), axial media (AM), circumferential full thickness, circumferential adventitia (CA), and circumferential media (CM). Uniaxial testing was performed using Inspec 2200 controlled by software developed using labview. The mean stiffness of the adventitia was 3570 ± 667 and 2960 ± 331 kPa in the axial and circumferential directions, respectively, while the corresponding values for the media were 1070 ± 186 and 1800 ± 384 kPa. The adventitia was significantly stiffer than the media in both the axial (p = 0.003) and circumferential (p = 0.010) directions. The stiffness of the full thickness specimens was nearly identical in the axial (1540 ± 186) and circumferential (1530 ± 389 kPa) directions. The differences in axial and circumferential stiffness of media and adventitia were not statistically significant.
publisherThe American Society of Mechanical Engineers (ASME)
titleStiffness Properties of Adventitia, Media, and Full Thickness Human Atherosclerotic Carotid Arteries in the Axial and Circumferential Directions
typeJournal Paper
journal volume139
journal issue12
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4037794
journal fristpage124501
journal lastpage124501-6
treeJournal of Biomechanical Engineering:;2017:;volume( 139 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record