Show simple item record

contributor authorBrassitos
contributor authorElias;Jalili
contributor authorNader
date accessioned2017-12-30T11:43:23Z
date available2017-12-30T11:43:23Z
date copyright9/6/2017 12:00:00 AM
date issued2017
identifier issn1942-4302
identifier otherjmr_009_06_061002.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242794
description abstractSpace robots require compact joint drive systems (JDSs), typically comprising of actuator, transmission, joint elements that can deliver high torques through stiff mechanical ports. Today's conventional space drive systems are made from off-the-shelf actuators and multistage transmissions that generally involve three to six stages. This current practice has certain benefits such as short development time due to the availability of mechanical components. However, it lacks a system-level integration that accounts for the actuator structure, size and output force, transmission structure, gear-ratio, and strength, and often leads to long and bulky assemblies with large number of parts. This paper presents a new robotic hardware that integrates the robot's JDS into one compact device that is optimized for its size and maximum torque density. This is done by designing the robotic joint using a special transmission which, when numerically optimized, can produce unlimited gear-ratios using only two stages. The design is computerized to obtain all the solutions that satisfy its kinematic relationships within a given actuator diameter. Compared to existing robotic actuators, the proposed design could lead to shorter assemblies with significantly lower number of parts for the same output torque. The theoretical results demonstrates the potential of an example device, for which a proof-of-concept plastic mockup was fabricated, that could deliver more than 200 N·m of torque in a package as small as a human elbow joint. The proposed technology could have strong technological implications in other industries such as powered prosthetics and rehabilitation equipment.
publisherThe American Society of Mechanical Engineers (ASME)
titleDesign and Development of a Compact High-Torque Robotic Actuator for Space Mechanisms
typeJournal Paper
journal volume9
journal issue6
journal titleJournal of Mechanisms and Robotics
identifier doi10.1115/1.4037567
journal fristpage61002
journal lastpage061002-11
treeJournal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record